{"title":"预偏e芯磁阻执行器力磁滞的预测","authors":"N. H. Vrijsen, J. Jansen, E. A. Lornonova","doi":"10.1109/IEMDC.2013.6556334","DOIUrl":null,"url":null,"abstract":"Magnetic hysteresis in the force of a pre-biased E-core reluctance actuator is researched. The simulations are performed with a 2d/3d finite element method (FEM) and two semianalytic methods are evaluated namely, the classical Preisach model (CPM), which is combined with a dynamic magnetic equivalent circuit (MEC) method, and a complex impedance model, which is combined with a static MEC model. Ultimately, the FEM simulations and analytical models are compared to force measurements performed on a piezoelectric load cell.","PeriodicalId":199452,"journal":{"name":"2013 International Electric Machines & Drives Conference","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Prediction of magnetic hysteresis in the force of a pre-biased E-core reluctance actuator\",\"authors\":\"N. H. Vrijsen, J. Jansen, E. A. Lornonova\",\"doi\":\"10.1109/IEMDC.2013.6556334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic hysteresis in the force of a pre-biased E-core reluctance actuator is researched. The simulations are performed with a 2d/3d finite element method (FEM) and two semianalytic methods are evaluated namely, the classical Preisach model (CPM), which is combined with a dynamic magnetic equivalent circuit (MEC) method, and a complex impedance model, which is combined with a static MEC model. Ultimately, the FEM simulations and analytical models are compared to force measurements performed on a piezoelectric load cell.\",\"PeriodicalId\":199452,\"journal\":{\"name\":\"2013 International Electric Machines & Drives Conference\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Electric Machines & Drives Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMDC.2013.6556334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Electric Machines & Drives Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMDC.2013.6556334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of magnetic hysteresis in the force of a pre-biased E-core reluctance actuator
Magnetic hysteresis in the force of a pre-biased E-core reluctance actuator is researched. The simulations are performed with a 2d/3d finite element method (FEM) and two semianalytic methods are evaluated namely, the classical Preisach model (CPM), which is combined with a dynamic magnetic equivalent circuit (MEC) method, and a complex impedance model, which is combined with a static MEC model. Ultimately, the FEM simulations and analytical models are compared to force measurements performed on a piezoelectric load cell.