{"title":"不同人工神经网络对脑肿瘤磁共振图像分类的比较","authors":"Yawar Rehman, C. F. Azim","doi":"10.1109/UKSim.2012.13","DOIUrl":null,"url":null,"abstract":"Artificial Neural Network algorithms has been tested for the classification of patterns and best among them was implemented for the application of brain tumour classification as specified by World Health Organization standards via 2D MR images. The technique of Rajasekaran and Pai (sBAM) was found to give most successful results of classifying tumour into their correct classes. The computation time taken by sBAM was also less as compared with other algorithms. sBAM technique wasn't tested on brain tumour MR images before but when it is subjected to test, it provided prominent results. The success rate of sBAM was also relatively high with its counterparts.","PeriodicalId":405479,"journal":{"name":"2012 UKSim 14th International Conference on Computer Modelling and Simulation","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Comparison of Different Artificial Neural Networks for Brain Tumour Classification via Magnetic Resonance Images\",\"authors\":\"Yawar Rehman, C. F. Azim\",\"doi\":\"10.1109/UKSim.2012.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial Neural Network algorithms has been tested for the classification of patterns and best among them was implemented for the application of brain tumour classification as specified by World Health Organization standards via 2D MR images. The technique of Rajasekaran and Pai (sBAM) was found to give most successful results of classifying tumour into their correct classes. The computation time taken by sBAM was also less as compared with other algorithms. sBAM technique wasn't tested on brain tumour MR images before but when it is subjected to test, it provided prominent results. The success rate of sBAM was also relatively high with its counterparts.\",\"PeriodicalId\":405479,\"journal\":{\"name\":\"2012 UKSim 14th International Conference on Computer Modelling and Simulation\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 UKSim 14th International Conference on Computer Modelling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UKSim.2012.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 UKSim 14th International Conference on Computer Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKSim.2012.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of Different Artificial Neural Networks for Brain Tumour Classification via Magnetic Resonance Images
Artificial Neural Network algorithms has been tested for the classification of patterns and best among them was implemented for the application of brain tumour classification as specified by World Health Organization standards via 2D MR images. The technique of Rajasekaran and Pai (sBAM) was found to give most successful results of classifying tumour into their correct classes. The computation time taken by sBAM was also less as compared with other algorithms. sBAM technique wasn't tested on brain tumour MR images before but when it is subjected to test, it provided prominent results. The success rate of sBAM was also relatively high with its counterparts.