{"title":"利用遗传算法提取几何原语","authors":"G. Roth, M. Levine","doi":"10.1109/CVPR.1992.223120","DOIUrl":null,"url":null,"abstract":"A genetic algorithm based on a minimal subset representation of a geometric primitive is used to perform primitive extraction. A genetic algorithm is an optimization method that uses the metaphor of evolution, and a minimal subset is the smallest number of points necessary to define a unique instance of a geometric primitive. The approach is capable of extracting more complex primitives than the Hough transform. While similar to a hierarchical merging algorithm, it does not suffer from the problem of premature commitment.<<ETX>>","PeriodicalId":325476,"journal":{"name":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"24 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"228","resultStr":"{\"title\":\"Geometric primitive extraction using a genetic algorithm\",\"authors\":\"G. Roth, M. Levine\",\"doi\":\"10.1109/CVPR.1992.223120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A genetic algorithm based on a minimal subset representation of a geometric primitive is used to perform primitive extraction. A genetic algorithm is an optimization method that uses the metaphor of evolution, and a minimal subset is the smallest number of points necessary to define a unique instance of a geometric primitive. The approach is capable of extracting more complex primitives than the Hough transform. While similar to a hierarchical merging algorithm, it does not suffer from the problem of premature commitment.<<ETX>>\",\"PeriodicalId\":325476,\"journal\":{\"name\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"volume\":\"24 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"228\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1992.223120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1992.223120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Geometric primitive extraction using a genetic algorithm
A genetic algorithm based on a minimal subset representation of a geometric primitive is used to perform primitive extraction. A genetic algorithm is an optimization method that uses the metaphor of evolution, and a minimal subset is the smallest number of points necessary to define a unique instance of a geometric primitive. The approach is capable of extracting more complex primitives than the Hough transform. While similar to a hierarchical merging algorithm, it does not suffer from the problem of premature commitment.<>