基于聚类的DNA序列De Novo Motif发现算法

Mohammad Haghir Ebrahim-Abadi, E. Fatemizadeh
{"title":"基于聚类的DNA序列De Novo Motif发现算法","authors":"Mohammad Haghir Ebrahim-Abadi, E. Fatemizadeh","doi":"10.1109/ICBME.2017.8430242","DOIUrl":null,"url":null,"abstract":"Motif discovery is a challenging problem in molecular biology and has been attracting researcher's attention for years. Different kind of data and computational methods have been used to unravel this problem, but there is still room for improvement. In this study, our goal was to develop a method with the ability to identify all the TFBS signals, including known and unknown, inside the input set of sequences. We developed a clustering method specialized as part of our algorithm which outperforms other existing clustering methods such as DNACLUST and CD-HIT-EST in clustering short sequences. A scoring system was needed to determine how much a cluster is close to being a real motif. Multiple features are calculated based on the contents of each cluster to determine the score of the cluster. These features contain a set of divergence measures, positional, and occurrence information. These scores are combined in a way that a trade-off between them determines the clusters situation. There is an option to compare the final results with the motif databases such as Jolma2013, and UniProbe using Tomtom motif comparison tool. Algorithm Evaluation has been performed on three datasets from ABS database.","PeriodicalId":116204,"journal":{"name":"2017 24th National and 2nd International Iranian Conference on Biomedical Engineering (ICBME)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Clustering-Based Algorithm for De Novo Motif Discovery in DNA Sequences\",\"authors\":\"Mohammad Haghir Ebrahim-Abadi, E. Fatemizadeh\",\"doi\":\"10.1109/ICBME.2017.8430242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motif discovery is a challenging problem in molecular biology and has been attracting researcher's attention for years. Different kind of data and computational methods have been used to unravel this problem, but there is still room for improvement. In this study, our goal was to develop a method with the ability to identify all the TFBS signals, including known and unknown, inside the input set of sequences. We developed a clustering method specialized as part of our algorithm which outperforms other existing clustering methods such as DNACLUST and CD-HIT-EST in clustering short sequences. A scoring system was needed to determine how much a cluster is close to being a real motif. Multiple features are calculated based on the contents of each cluster to determine the score of the cluster. These features contain a set of divergence measures, positional, and occurrence information. These scores are combined in a way that a trade-off between them determines the clusters situation. There is an option to compare the final results with the motif databases such as Jolma2013, and UniProbe using Tomtom motif comparison tool. Algorithm Evaluation has been performed on three datasets from ABS database.\",\"PeriodicalId\":116204,\"journal\":{\"name\":\"2017 24th National and 2nd International Iranian Conference on Biomedical Engineering (ICBME)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 24th National and 2nd International Iranian Conference on Biomedical Engineering (ICBME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBME.2017.8430242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 24th National and 2nd International Iranian Conference on Biomedical Engineering (ICBME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBME.2017.8430242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基序发现是分子生物学中的一个具有挑战性的问题,多年来一直受到研究者的关注。不同类型的数据和计算方法已经被用来解开这个问题,但仍有改进的空间。在这项研究中,我们的目标是开发一种能够识别输入序列集中所有TFBS信号的方法,包括已知和未知信号。我们开发了一种专门的聚类方法作为我们算法的一部分,它在聚类短序列方面优于其他现有的聚类方法,如DNACLUST和CD-HIT-EST。我们需要一个评分系统来确定一个簇在多大程度上接近于一个真正的母题。根据每个聚类的内容计算多个特征,从而确定聚类的得分。这些特性包含一组发散度量、位置和发生信息。这些分数以一种权衡的方式组合在一起,决定了集群的情况。还可以选择使用Tomtom motif比较工具将最终结果与motif数据库(如Jolma2013)和UniProbe进行比较。对ABS数据库中的三个数据集进行了算法评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Clustering-Based Algorithm for De Novo Motif Discovery in DNA Sequences
Motif discovery is a challenging problem in molecular biology and has been attracting researcher's attention for years. Different kind of data and computational methods have been used to unravel this problem, but there is still room for improvement. In this study, our goal was to develop a method with the ability to identify all the TFBS signals, including known and unknown, inside the input set of sequences. We developed a clustering method specialized as part of our algorithm which outperforms other existing clustering methods such as DNACLUST and CD-HIT-EST in clustering short sequences. A scoring system was needed to determine how much a cluster is close to being a real motif. Multiple features are calculated based on the contents of each cluster to determine the score of the cluster. These features contain a set of divergence measures, positional, and occurrence information. These scores are combined in a way that a trade-off between them determines the clusters situation. There is an option to compare the final results with the motif databases such as Jolma2013, and UniProbe using Tomtom motif comparison tool. Algorithm Evaluation has been performed on three datasets from ABS database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信