使用帕累托前沿的运算放大器的上下文无关性能建模

E. Roca, Manuel Velasco-Jimenez, R. Castro-López, F. Fernández
{"title":"使用帕累托前沿的运算放大器的上下文无关性能建模","authors":"E. Roca, Manuel Velasco-Jimenez, R. Castro-López, F. Fernández","doi":"10.1109/SM2ACD.2010.5672310","DOIUrl":null,"url":null,"abstract":"The use of performance trade-off fronts, also known as Pareto fronts, in emerging design methodologies for analog integrated circuits is a keystone to overcome the limitations of the traditional top-down methodologies. However, most techniques reported so far to generate the fronts neglect the effect of the surrounding circuitry (such as the output load impedance) on the Pareto-front, thereby making it only valid for the context where the front was generated. This strongly limits its use in hierarchical analog synthesis because of the heavy dependence of key performances on the surrounding circuitry, but, more importantly, because this circuitry remains unknown until the synthesis process. We propose a new technique to generate the trade-off fronts that is independent of the load that the circuit has to drive. This idea is exploited for a Miller operational amplifier, and experimental results show that this is a promising approach to solve the issue.","PeriodicalId":442381,"journal":{"name":"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Context-independent performance modeling of operational amplifiers using Pareto fronts\",\"authors\":\"E. Roca, Manuel Velasco-Jimenez, R. Castro-López, F. Fernández\",\"doi\":\"10.1109/SM2ACD.2010.5672310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of performance trade-off fronts, also known as Pareto fronts, in emerging design methodologies for analog integrated circuits is a keystone to overcome the limitations of the traditional top-down methodologies. However, most techniques reported so far to generate the fronts neglect the effect of the surrounding circuitry (such as the output load impedance) on the Pareto-front, thereby making it only valid for the context where the front was generated. This strongly limits its use in hierarchical analog synthesis because of the heavy dependence of key performances on the surrounding circuitry, but, more importantly, because this circuitry remains unknown until the synthesis process. We propose a new technique to generate the trade-off fronts that is independent of the load that the circuit has to drive. This idea is exploited for a Miller operational amplifier, and experimental results show that this is a promising approach to solve the issue.\",\"PeriodicalId\":442381,\"journal\":{\"name\":\"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SM2ACD.2010.5672310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 XIth International Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SM2ACD.2010.5672310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在模拟集成电路的新兴设计方法中使用性能权衡前沿,也称为帕累托前沿,是克服传统自上而下方法局限性的基石。然而,迄今为止报告的大多数技术都忽略了周围电路(如输出负载阻抗)对帕累托前的影响,从而使其仅对产生前的上下文中有效。这极大地限制了它在分层模拟合成中的应用,因为关键性能严重依赖于周围的电路,但更重要的是,因为这种电路在合成过程之前是未知的。我们提出了一种新的技术来产生与电路必须驱动的负载无关的权衡前。这一想法被用于米勒运算放大器,实验结果表明,这是一个很有前途的方法来解决这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context-independent performance modeling of operational amplifiers using Pareto fronts
The use of performance trade-off fronts, also known as Pareto fronts, in emerging design methodologies for analog integrated circuits is a keystone to overcome the limitations of the traditional top-down methodologies. However, most techniques reported so far to generate the fronts neglect the effect of the surrounding circuitry (such as the output load impedance) on the Pareto-front, thereby making it only valid for the context where the front was generated. This strongly limits its use in hierarchical analog synthesis because of the heavy dependence of key performances on the surrounding circuitry, but, more importantly, because this circuitry remains unknown until the synthesis process. We propose a new technique to generate the trade-off fronts that is independent of the load that the circuit has to drive. This idea is exploited for a Miller operational amplifier, and experimental results show that this is a promising approach to solve the issue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信