{"title":"基于模型的fpga硬件SC极解码器设计","authors":"Yann Delomier, B. Gal, J. Crenne, C. Jégo","doi":"10.1145/3391431","DOIUrl":null,"url":null,"abstract":"Polar codes are a new error correction code family that should be benchmarked and evaluated in comparison to LDPC and turbo-codes. Indeed, recent advances in the 5G digital communication standard recommended the use of polar codes in EMBB control channels. However, in many cases, the implementation of efficient FEC hardware decoders is challenging. Specialised knowledge is required to enable and facilitate testing, rapid design iterations, and fast prototyping. In this article, a model-based design methodology to generate efficient hardware SC polar code decoders is presented. With HLS design process and tools, we demonstrate how FPGA system designers can quickly develop complex hardware systems with good performances. The favourable impact of design space exploration is underlined on achievable performances when a relevant computation model is used. The flexibility of the abstraction layers is evaluated. Hardware decoder generation efficiency is assessed and compared to competing approaches. It is shown that the fine-tuning of computation parallelism, bit length, pruning level, and working frequency help to design high-throughput decoders with moderate hardware complexities. Decoding throughputs higher than 300 Mbps are achieved on an Xilinx Virtex-7 device and on an Altera Stratix IV device.","PeriodicalId":162787,"journal":{"name":"ACM Transactions on Reconfigurable Technology and Systems (TRETS)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Model-based Design of Hardware SC Polar Decoders for FPGAs\",\"authors\":\"Yann Delomier, B. Gal, J. Crenne, C. Jégo\",\"doi\":\"10.1145/3391431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Polar codes are a new error correction code family that should be benchmarked and evaluated in comparison to LDPC and turbo-codes. Indeed, recent advances in the 5G digital communication standard recommended the use of polar codes in EMBB control channels. However, in many cases, the implementation of efficient FEC hardware decoders is challenging. Specialised knowledge is required to enable and facilitate testing, rapid design iterations, and fast prototyping. In this article, a model-based design methodology to generate efficient hardware SC polar code decoders is presented. With HLS design process and tools, we demonstrate how FPGA system designers can quickly develop complex hardware systems with good performances. The favourable impact of design space exploration is underlined on achievable performances when a relevant computation model is used. The flexibility of the abstraction layers is evaluated. Hardware decoder generation efficiency is assessed and compared to competing approaches. It is shown that the fine-tuning of computation parallelism, bit length, pruning level, and working frequency help to design high-throughput decoders with moderate hardware complexities. Decoding throughputs higher than 300 Mbps are achieved on an Xilinx Virtex-7 device and on an Altera Stratix IV device.\",\"PeriodicalId\":162787,\"journal\":{\"name\":\"ACM Transactions on Reconfigurable Technology and Systems (TRETS)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Reconfigurable Technology and Systems (TRETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3391431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Reconfigurable Technology and Systems (TRETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3391431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model-based Design of Hardware SC Polar Decoders for FPGAs
Polar codes are a new error correction code family that should be benchmarked and evaluated in comparison to LDPC and turbo-codes. Indeed, recent advances in the 5G digital communication standard recommended the use of polar codes in EMBB control channels. However, in many cases, the implementation of efficient FEC hardware decoders is challenging. Specialised knowledge is required to enable and facilitate testing, rapid design iterations, and fast prototyping. In this article, a model-based design methodology to generate efficient hardware SC polar code decoders is presented. With HLS design process and tools, we demonstrate how FPGA system designers can quickly develop complex hardware systems with good performances. The favourable impact of design space exploration is underlined on achievable performances when a relevant computation model is used. The flexibility of the abstraction layers is evaluated. Hardware decoder generation efficiency is assessed and compared to competing approaches. It is shown that the fine-tuning of computation parallelism, bit length, pruning level, and working frequency help to design high-throughput decoders with moderate hardware complexities. Decoding throughputs higher than 300 Mbps are achieved on an Xilinx Virtex-7 device and on an Altera Stratix IV device.