Nurhaliza Bin Aras, Risawandi Risawandi, Lidya Rosnita
{"title":"ANALISIS SENTIMEN KEPUASAN CUSTOMER TERHADAP EKSPEDISI TIKI, SICEPAT EXPRESS DAN NINJA EXPRESS MENGGUNAKAN ALGORITMA NAIVE BAYES","authors":"Nurhaliza Bin Aras, Risawandi Risawandi, Lidya Rosnita","doi":"10.33143/jics.v9i1.2943","DOIUrl":null,"url":null,"abstract":"Abstrak—Perkembangan ilmu pengetahuan dan teknologi informasi pada masa ini sangat pesat. Adanya pemasaran produk secara global tersebut menjadikan perkembangan ekspedisi barang juga mengalami kemajuan yang signifikan. Kebutuhan penggunaan jasa ekspedisi barang yang dipergunakan masyarakat untuk memenuhi berbagai kebutuhannya sangat meningkat pesat. Hadirnya berbagai jasa ekspedisi barang tidak hanya mempermudah masyarakat namun juga para pengusaha atau seller. Penelitian ini bertujuan untuk menganalisis sentimen terhadap kepuassan customer ekspedisi yaitu tiki, sicepat express dan ninja express pada twitter dengan menggunakan metode Algoritma Naïve Bayes. Beberapa proses dalam melakukan klasifikasi sentimen, yang pertama melakukan koleksi data di twitter menggunakan scraping setalah itu pemberian labelling, kemudian dilakukan text pre-processing pada data yang meliputi cleansing data, case folding, tokenizing, stopword removal, dan stemming. Selanjutnya dilakukan proses klasifikasi pada data. Data yang digunakan dalam penelitian ini berjumlah 3000, setiap objeknya dengan jumlah 1000 data kemudian dibagi menjadi 3 kelas yaitu positif, negatif dan netral. Dari 3000 data dibagi menjadi 2 bagian yaitu 70% data training dan 30% data testing. Berdasarkan hasil evaluasi klasifikasi dengan algoritma Naïve Bayes menghasilkan akurasi yang sangat tinggi. Akurasi Sicepat Express sebesar 89,73%, presisi sebesar 58,81%, recall sebesar 40,1% dan f1-score sebesar 42,6%. Akurasi Ninja Express sebesar 80,66%, presisi sebesar 49,4%, recall sebesar 40,8% dan f1-score sebesar 41,5%. Akurasi Tiki sebesar 74,48%, presisi sebesar 65,42%, recall sebesar 57,14% dan f1-score sebesar 56,81%.Kata kunci: Ekspedisi, Sentimen, Data, Naïve BayesAbstract— The development of science and information technology at this time is very rapid. The existence of global product marketing has made the development of freight forwarding also experience significant progress. The need for the use of freight forwarding services that are used by the community to meet their various needs is increasing rapidly. The presence of various freight forwarding services not only makes it easier for the community but also entrepreneurs or sellers. This study aims to analyze sentiment on customer satisfaction on expeditions, namely tiki, sicepat express and ninja express on twitter using the Naïve Bayes algorithm. There are several processes in classifying sentiments, the first is to collect data on twitter using scraping after that labeling, then text pre-processing is carried out on the data which includes data cleansing, case folding, tokenizing, stopword removal, and stemming. Furthermore, the classification process is carried out on the data. The data used in this study amounted to 3000, each object with a total of 1000 data was then divided into 3 classes, namely positive, negative and neutral. Of the 3000 data is divided into 2 parts, namely 70% training data and 30% testing data. Based on the results of the classification evaluation with the Naïve Bayes algorithm, it produces a very high accuracy. The accuracy of Sicepat Express is 89.73%, precision is 53,5%, recall is 40,1% and f1-score is 42,6%. Ninja Express accuracy is 80.66%, precision is 49,4%, recall is 40,8% and f1-score is 41,5%. Tiki's accuracy is 74.48%, precision is 65,42%, recall is 57,14% and f1-score is 56,81%.Keywords: Ekspedition, Sentiment, Data, Naïve bayes","PeriodicalId":173281,"journal":{"name":"JOURNAL OF INFORMATICS AND COMPUTER SCIENCE","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF INFORMATICS AND COMPUTER SCIENCE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33143/jics.v9i1.2943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

抽象——信息技术在当今时代的发展是前所未有的。这种全球产品营销的存在也使商品远征队的发展取得了显著进展。人们为满足这些需求而使用的商品远征队的需求大大增加了。商品探险服务的出现不仅使社区更容易,也使商人或卖家更容易。这项研究的目的是用Naive Bayes算法在twitter上分析顾客满意的情绪。一些情绪分类的过程,首先使用标签标签的刮擦技术在twitter上收集数据,然后对清理数据、案例折叠、贴标签、消元法、消元罐和印章等数据进行文本处理。接下来是数据的分类过程。这项研究使用的数据有3000个,每个对象加1000个数据,然后除以3个类,正的、负的和中性的。3000个数据除以70%的培训数据和30%的数据测试。根据天真贝斯算法的分类评估结果,得出的结论非常准确。快速快车的精度为89.73%,精度为58.81%,召回为40.1%和f1-score为42.6%。忍者快车的准确性为80.66%,精度为49.4%,回报率为40.8%,f1-score为41.5%。Tiki准确率为74.48%,精度为65.42%,召回率为57.14%,f1分为56,81%。关键词:探险、情感、数据、天真的BayesAbstract——目前科学与信息技术的发展非常迅速。全球产品市场的存在也有重要进展的经验。人们需要用自由贸易来满足他们不断增长的需求。不同价格服务的呈现不仅使其对社区更容易,也使其企业或卖家更容易。这是一项研究,旨在分析顾客满意的反应,namely tiki, sifast express和忍者快车在twitter上使用假性Bayes算法。在层次化的感知过程中,首先是在推特上收集数据,在标签之后,然后短信处理被编入所谓的清洁数据、案例折叠、附加、消元、消元和盖章。此外,机密处理程序被列在数据中。在这项研究中,每一个物体的1000个数据被记录为3节、namely正、负和neutral。3000个数据被输入2个部分,而namely 70%的数据培训和30%的数据测试。基于基于天真率算法的经典计算结果,它的产量非常高。sifast Express的准确计算是89.73%,准确是53.5%,记住是40.1%和f1分数是42.6%。忍者快车计算是80。66%,准确是49.4%,记住是40.8%,f1-分数是41.5%。Tiki准确是74.48%,准确是65.42%,计算是57.14%,f1分数是56.81%。探险,情感,数据,天真的贝斯
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANALISIS SENTIMEN KEPUASAN CUSTOMER TERHADAP EKSPEDISI TIKI, SICEPAT EXPRESS DAN NINJA EXPRESS MENGGUNAKAN ALGORITMA NAIVE BAYES
Abstrak—Perkembangan ilmu pengetahuan dan teknologi informasi pada masa ini sangat pesat. Adanya pemasaran produk secara global tersebut menjadikan perkembangan ekspedisi barang juga mengalami kemajuan yang signifikan. Kebutuhan penggunaan jasa ekspedisi barang yang dipergunakan masyarakat untuk memenuhi berbagai kebutuhannya sangat meningkat pesat. Hadirnya berbagai jasa ekspedisi barang tidak hanya mempermudah masyarakat namun juga para pengusaha atau seller. Penelitian ini bertujuan untuk menganalisis sentimen terhadap kepuassan customer ekspedisi yaitu tiki, sicepat express dan ninja express pada twitter dengan menggunakan metode Algoritma Naïve Bayes. Beberapa proses dalam melakukan klasifikasi sentimen, yang pertama melakukan koleksi data di twitter menggunakan scraping setalah itu pemberian labelling, kemudian dilakukan text pre-processing pada data yang meliputi cleansing data, case folding, tokenizing, stopword removal, dan stemming. Selanjutnya dilakukan proses klasifikasi pada data. Data yang digunakan dalam penelitian ini berjumlah 3000, setiap objeknya dengan jumlah 1000 data kemudian dibagi menjadi 3 kelas yaitu positif, negatif dan netral. Dari 3000 data dibagi menjadi 2 bagian yaitu 70% data training dan 30% data testing. Berdasarkan hasil evaluasi klasifikasi dengan algoritma Naïve Bayes menghasilkan akurasi yang sangat tinggi. Akurasi Sicepat Express sebesar 89,73%, presisi sebesar 58,81%, recall sebesar 40,1% dan f1-score sebesar 42,6%. Akurasi Ninja Express sebesar 80,66%, presisi sebesar 49,4%, recall sebesar 40,8% dan f1-score sebesar 41,5%. Akurasi Tiki sebesar 74,48%, presisi sebesar 65,42%, recall sebesar 57,14% dan f1-score sebesar 56,81%.Kata kunci: Ekspedisi, Sentimen, Data, Naïve BayesAbstract— The development of science and information technology at this time is very rapid. The existence of global product marketing has made the development of freight forwarding also experience significant progress. The need for the use of freight forwarding services that are used by the community to meet their various needs is increasing rapidly. The presence of various freight forwarding services not only makes it easier for the community but also entrepreneurs or sellers. This study aims to analyze sentiment on customer satisfaction on expeditions, namely tiki, sicepat express and ninja express on twitter using the Naïve Bayes algorithm. There are several processes in classifying sentiments, the first is to collect data on twitter using scraping after that labeling, then text pre-processing is carried out on the data which includes data cleansing, case folding, tokenizing, stopword removal, and stemming. Furthermore, the classification process is carried out on the data. The data used in this study amounted to 3000, each object with a total of 1000 data was then divided into 3 classes, namely positive, negative and neutral. Of the 3000 data is divided into 2 parts, namely 70% training data and 30% testing data. Based on the results of the classification evaluation with the Naïve Bayes algorithm, it produces a very high accuracy. The accuracy of Sicepat Express is 89.73%, precision is 53,5%, recall is 40,1% and f1-score is 42,6%. Ninja Express accuracy is 80.66%, precision is 49,4%, recall is 40,8% and f1-score is 41,5%. Tiki's accuracy is 74.48%, precision is 65,42%, recall is 57,14% and f1-score is 56,81%.Keywords: Ekspedition, Sentiment, Data, Naïve bayes
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信