会话查询聚合

DUBMOD '14 Pub Date : 2014-11-03 DOI:10.1145/2665994.2666001
Dongyi Guan, G. Yang
{"title":"会话查询聚合","authors":"Dongyi Guan, G. Yang","doi":"10.1145/2665994.2666001","DOIUrl":null,"url":null,"abstract":"Session search retrieves documents for a sequence of queries in a session. Prior research demonstrated that query aggregation is an effective technique for session search. This paper proposes a novel query aggregation scheme based on the discount factor in reinforcement learning. Moreover, we compare various query aggregation schemes and investigate the best scheme for aggregating queries in session search. Evaluation conducted over TREC 2011 and 2012 shows that the proposed scheme works the best and outperforms the TREC best system as well as learned weights by learning to rank.","PeriodicalId":346862,"journal":{"name":"DUBMOD '14","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Query Aggregation in Session Search\",\"authors\":\"Dongyi Guan, G. Yang\",\"doi\":\"10.1145/2665994.2666001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Session search retrieves documents for a sequence of queries in a session. Prior research demonstrated that query aggregation is an effective technique for session search. This paper proposes a novel query aggregation scheme based on the discount factor in reinforcement learning. Moreover, we compare various query aggregation schemes and investigate the best scheme for aggregating queries in session search. Evaluation conducted over TREC 2011 and 2012 shows that the proposed scheme works the best and outperforms the TREC best system as well as learned weights by learning to rank.\",\"PeriodicalId\":346862,\"journal\":{\"name\":\"DUBMOD '14\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DUBMOD '14\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2665994.2666001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DUBMOD '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2665994.2666001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

会话搜索为会话中的查询序列检索文档。已有研究表明,查询聚合是一种有效的会话搜索技术。在强化学习中,提出了一种新的基于折扣因子的查询聚合方案。此外,我们比较了各种查询聚合方案,并研究了会话搜索中查询聚合的最佳方案。对TREC 2011和2012进行的评估表明,该方案效果最佳,优于TREC最佳系统以及通过学习排名学习到的权重。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Query Aggregation in Session Search
Session search retrieves documents for a sequence of queries in a session. Prior research demonstrated that query aggregation is an effective technique for session search. This paper proposes a novel query aggregation scheme based on the discount factor in reinforcement learning. Moreover, we compare various query aggregation schemes and investigate the best scheme for aggregating queries in session search. Evaluation conducted over TREC 2011 and 2012 shows that the proposed scheme works the best and outperforms the TREC best system as well as learned weights by learning to rank.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信