睡眠阶段分类的广义滤波器组设计

E. A. Oral, M. M. Codur, I. Ozbek
{"title":"睡眠阶段分类的广义滤波器组设计","authors":"E. A. Oral, M. M. Codur, I. Ozbek","doi":"10.1109/IDAP.2017.8090175","DOIUrl":null,"url":null,"abstract":"In this study, binary sleep stage classification (sleep or awake state) was performed using single-channel EEG signal. A new frequency warping function is proposed for this purpose. This function provides a bending function that can proper orientation and depth of the EEG signal frequency content. In this way a generalized filter set of was designed. With the help of this filter set, cepstrum features are extracted. In classification stage, Support Vector Machines (SVM) are employed because of its good performance at binary classification. According to the experimental results, the highest correct classification rate(accuracy) is 98.40%. The result is better than studies which use same database in literature.","PeriodicalId":111721,"journal":{"name":"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generalized filter bank design for sleep stage classification\",\"authors\":\"E. A. Oral, M. M. Codur, I. Ozbek\",\"doi\":\"10.1109/IDAP.2017.8090175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, binary sleep stage classification (sleep or awake state) was performed using single-channel EEG signal. A new frequency warping function is proposed for this purpose. This function provides a bending function that can proper orientation and depth of the EEG signal frequency content. In this way a generalized filter set of was designed. With the help of this filter set, cepstrum features are extracted. In classification stage, Support Vector Machines (SVM) are employed because of its good performance at binary classification. According to the experimental results, the highest correct classification rate(accuracy) is 98.40%. The result is better than studies which use same database in literature.\",\"PeriodicalId\":111721,\"journal\":{\"name\":\"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDAP.2017.8090175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAP.2017.8090175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究采用单通道脑电图信号进行睡眠和清醒二阶段分类。为此,提出了一种新的频率扭曲函数。该函数提供了一种弯曲函数,可以对脑电信号的频率内容进行适当的定向和深度处理。在此基础上设计了一个广义滤波集。利用该滤波器集提取倒谱特征。在分类阶段,由于支持向量机具有良好的二值分类性能,因此采用支持向量机进行分类。实验结果表明,该方法的最高正确分类率(准确率)为98.40%。结果优于文献中使用同一数据库的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized filter bank design for sleep stage classification
In this study, binary sleep stage classification (sleep or awake state) was performed using single-channel EEG signal. A new frequency warping function is proposed for this purpose. This function provides a bending function that can proper orientation and depth of the EEG signal frequency content. In this way a generalized filter set of was designed. With the help of this filter set, cepstrum features are extracted. In classification stage, Support Vector Machines (SVM) are employed because of its good performance at binary classification. According to the experimental results, the highest correct classification rate(accuracy) is 98.40%. The result is better than studies which use same database in literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信