各向异性晶格上的Kleinberg导航

J. Campuzano, James P. Bagrow, D. ben-Avraham
{"title":"各向异性晶格上的Kleinberg导航","authors":"J. Campuzano, James P. Bagrow, D. ben-Avraham","doi":"10.1155/2008/346543","DOIUrl":null,"url":null,"abstract":"We study the Kleinberg problem of navigation in small-world networks when the underlying lattice is stretched along a preferred direction. Extensive simulations confirm that maximally efficient navigation is attained when the length r of long-range links is taken from the distribution P(r)∼r−α, when the exponent α is equal to 2, the dimension of the underlying lattice, regardless of the amount of anisotropy, but only in the limit of infinite lattice size, L→∞. For finite size lattices we find an optimal α(L) that depends strongly on L. The convergence to α=2 as L→∞ shows interesting power-law dependence on the anisotropy strength.","PeriodicalId":341677,"journal":{"name":"Research Letters in Physics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Kleinberg Navigation on Anisotropic Lattices\",\"authors\":\"J. Campuzano, James P. Bagrow, D. ben-Avraham\",\"doi\":\"10.1155/2008/346543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the Kleinberg problem of navigation in small-world networks when the underlying lattice is stretched along a preferred direction. Extensive simulations confirm that maximally efficient navigation is attained when the length r of long-range links is taken from the distribution P(r)∼r−α, when the exponent α is equal to 2, the dimension of the underlying lattice, regardless of the amount of anisotropy, but only in the limit of infinite lattice size, L→∞. For finite size lattices we find an optimal α(L) that depends strongly on L. The convergence to α=2 as L→∞ shows interesting power-law dependence on the anisotropy strength.\",\"PeriodicalId\":341677,\"journal\":{\"name\":\"Research Letters in Physics\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Letters in Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2008/346543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Letters in Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2008/346543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了小世界网络中晶格沿偏好方向拉伸时的Kleinberg导航问题。大量的模拟证实,当远程链路的长度r从分布P(r) ~ r−α中取时,当指数α等于2时,底层晶格的维数,无论各向异性的数量如何,但仅在无限晶格大小的极限L→∞时,可以获得最大效率的导航。对于有限大小的晶格,我们发现了一个强烈依赖于L的最优α(L)。当L→∞时,收敛到α=2,显示出有趣的幂律依赖于各向异性强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kleinberg Navigation on Anisotropic Lattices
We study the Kleinberg problem of navigation in small-world networks when the underlying lattice is stretched along a preferred direction. Extensive simulations confirm that maximally efficient navigation is attained when the length r of long-range links is taken from the distribution P(r)∼r−α, when the exponent α is equal to 2, the dimension of the underlying lattice, regardless of the amount of anisotropy, but only in the limit of infinite lattice size, L→∞. For finite size lattices we find an optimal α(L) that depends strongly on L. The convergence to α=2 as L→∞ shows interesting power-law dependence on the anisotropy strength.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信