不同冷却风扇位置下酯油变压器的热性能

Jeyabalan Velandy, Ankita Garg, C. Narasimhan
{"title":"不同冷却风扇位置下酯油变压器的热性能","authors":"Jeyabalan Velandy, Ankita Garg, C. Narasimhan","doi":"10.1109/PIICON49524.2020.9112958","DOIUrl":null,"url":null,"abstract":"Ester oil is becoming a substitute to replace mineral oil for transformers due to higher fire safe, environmental friendly, higher thermal stability and or longer insulation life (transformer life). The chemical composition and molecular structure of ester oil groups of natural ester oil and synthetic ester oil are entirely different from commonly used petroleum based mineral oil. The higher viscous nature of ester oil will increase the oil temperature rise, winding temperature rise, winding gradient and hot-spot temperature due to less convective heat transfer. Hence, the internal and external cooling modes of transformer needs to be analyzed extensively by transformer manufacturer to get an advantageous of ester oil for transformer applications. In this paper, Thermal Hydraulic Network Model (THNM) is effectively utilized to predict top oil temperature rise, bottom oil temperature rise, winding temperature rise, oil flow rate and hot-spot temperature on 12.5/16MVA, 132/11kV transformer winding geometry with different types of ester oil and comparing its results with mineral oil under steady state conditions. In addition, effect of different types of cooling fan mounting arrangements (vertical and horizontal manner) on 4 radiators with 3 cooling fan and 4 radiators with 4 fan are analyzed and its results are compared for ester oil and mineral oil. Temperature rise test is also performed to validate the THNM results.","PeriodicalId":422853,"journal":{"name":"2020 IEEE 9th Power India International Conference (PIICON)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Thermal Performance of Ester Oil Transformers with Different Placement of Cooling Fan\",\"authors\":\"Jeyabalan Velandy, Ankita Garg, C. Narasimhan\",\"doi\":\"10.1109/PIICON49524.2020.9112958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ester oil is becoming a substitute to replace mineral oil for transformers due to higher fire safe, environmental friendly, higher thermal stability and or longer insulation life (transformer life). The chemical composition and molecular structure of ester oil groups of natural ester oil and synthetic ester oil are entirely different from commonly used petroleum based mineral oil. The higher viscous nature of ester oil will increase the oil temperature rise, winding temperature rise, winding gradient and hot-spot temperature due to less convective heat transfer. Hence, the internal and external cooling modes of transformer needs to be analyzed extensively by transformer manufacturer to get an advantageous of ester oil for transformer applications. In this paper, Thermal Hydraulic Network Model (THNM) is effectively utilized to predict top oil temperature rise, bottom oil temperature rise, winding temperature rise, oil flow rate and hot-spot temperature on 12.5/16MVA, 132/11kV transformer winding geometry with different types of ester oil and comparing its results with mineral oil under steady state conditions. In addition, effect of different types of cooling fan mounting arrangements (vertical and horizontal manner) on 4 radiators with 3 cooling fan and 4 radiators with 4 fan are analyzed and its results are compared for ester oil and mineral oil. Temperature rise test is also performed to validate the THNM results.\",\"PeriodicalId\":422853,\"journal\":{\"name\":\"2020 IEEE 9th Power India International Conference (PIICON)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 9th Power India International Conference (PIICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIICON49524.2020.9112958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 9th Power India International Conference (PIICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIICON49524.2020.9112958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

酯油具有更高的防火安全性、环保性、更高的热稳定性和更长的绝缘寿命(变压器寿命),正在成为替代矿物油的变压器替代品。天然酯油和合成酯油的酯油基团的化学组成和分子结构与常用的石油基矿物油完全不同。高粘度的酯油由于对流换热较少,会使油温升、缠绕温升、缠绕梯度和热点温度升高。因此,变压器制造商需要对变压器的内部和外部冷却方式进行广泛的分析,以获得酯油在变压器应用中的优势。本文利用热液网络模型(THNM)对12.5/16MVA、132/11kV不同类型酯油的变压器绕组几何形状进行了有效预测,并与矿物油在稳态条件下的结果进行了比较。此外,还分析了不同散热风扇安装方式(垂直方式和水平方式)对4台散热器3散热风扇和4台散热器4散热风扇的影响,并对酯油和矿物油的结果进行了比较。温升试验也验证了THNM的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal Performance of Ester Oil Transformers with Different Placement of Cooling Fan
Ester oil is becoming a substitute to replace mineral oil for transformers due to higher fire safe, environmental friendly, higher thermal stability and or longer insulation life (transformer life). The chemical composition and molecular structure of ester oil groups of natural ester oil and synthetic ester oil are entirely different from commonly used petroleum based mineral oil. The higher viscous nature of ester oil will increase the oil temperature rise, winding temperature rise, winding gradient and hot-spot temperature due to less convective heat transfer. Hence, the internal and external cooling modes of transformer needs to be analyzed extensively by transformer manufacturer to get an advantageous of ester oil for transformer applications. In this paper, Thermal Hydraulic Network Model (THNM) is effectively utilized to predict top oil temperature rise, bottom oil temperature rise, winding temperature rise, oil flow rate and hot-spot temperature on 12.5/16MVA, 132/11kV transformer winding geometry with different types of ester oil and comparing its results with mineral oil under steady state conditions. In addition, effect of different types of cooling fan mounting arrangements (vertical and horizontal manner) on 4 radiators with 3 cooling fan and 4 radiators with 4 fan are analyzed and its results are compared for ester oil and mineral oil. Temperature rise test is also performed to validate the THNM results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信