面向网络骚扰研究的大型标注语料库

J. Golbeck, Zahra Ashktorab, Rashad O. Banjo, Alexandra Berlinger, Siddharth Bhagwan, C. Buntain, Paul Cheakalos, Alicia A. Geller, Quint Gergory, R. Gnanasekaran, Raja Rajan Gunasekaran, K. Hoffman, Jenny Hottle, Vichita Jienjitlert, Shivika Khare, Ryan Lau, Marianna J. Martindale, Shalmali Naik, Heather L. Nixon, P. Ramachandran, Kristine M. Rogers, Lisa Rogers, Meghna Sardana Sarin, Gaurav Shahane, Jayanee Thanki, Priyanka Vengataraman, Zijian Wan, D. Wu
{"title":"面向网络骚扰研究的大型标注语料库","authors":"J. Golbeck, Zahra Ashktorab, Rashad O. Banjo, Alexandra Berlinger, Siddharth Bhagwan, C. Buntain, Paul Cheakalos, Alicia A. Geller, Quint Gergory, R. Gnanasekaran, Raja Rajan Gunasekaran, K. Hoffman, Jenny Hottle, Vichita Jienjitlert, Shivika Khare, Ryan Lau, Marianna J. Martindale, Shalmali Naik, Heather L. Nixon, P. Ramachandran, Kristine M. Rogers, Lisa Rogers, Meghna Sardana Sarin, Gaurav Shahane, Jayanee Thanki, Priyanka Vengataraman, Zijian Wan, D. Wu","doi":"10.1145/3091478.3091509","DOIUrl":null,"url":null,"abstract":"A fundamental part of conducting cross-disciplinary web science research is having useful, high-quality datasets that provide value to studies across disciplines. In this paper, we introduce a large, hand-coded corpus of online harassment data. A team of researchers collaboratively developed a codebook using grounded theory and labeled 35,000 tweets. Our resulting dataset has roughly 15% positive harassment examples and 85% negative examples. This data is useful for training machine learning models, identifying textual and linguistic features of online harassment, and for studying the nature of harassing comments and the culture of trolling.","PeriodicalId":165747,"journal":{"name":"Proceedings of the 2017 ACM on Web Science Conference","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"170","resultStr":"{\"title\":\"A Large Labeled Corpus for Online Harassment Research\",\"authors\":\"J. Golbeck, Zahra Ashktorab, Rashad O. Banjo, Alexandra Berlinger, Siddharth Bhagwan, C. Buntain, Paul Cheakalos, Alicia A. Geller, Quint Gergory, R. Gnanasekaran, Raja Rajan Gunasekaran, K. Hoffman, Jenny Hottle, Vichita Jienjitlert, Shivika Khare, Ryan Lau, Marianna J. Martindale, Shalmali Naik, Heather L. Nixon, P. Ramachandran, Kristine M. Rogers, Lisa Rogers, Meghna Sardana Sarin, Gaurav Shahane, Jayanee Thanki, Priyanka Vengataraman, Zijian Wan, D. Wu\",\"doi\":\"10.1145/3091478.3091509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fundamental part of conducting cross-disciplinary web science research is having useful, high-quality datasets that provide value to studies across disciplines. In this paper, we introduce a large, hand-coded corpus of online harassment data. A team of researchers collaboratively developed a codebook using grounded theory and labeled 35,000 tweets. Our resulting dataset has roughly 15% positive harassment examples and 85% negative examples. This data is useful for training machine learning models, identifying textual and linguistic features of online harassment, and for studying the nature of harassing comments and the culture of trolling.\",\"PeriodicalId\":165747,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on Web Science Conference\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"170\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on Web Science Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3091478.3091509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Web Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3091478.3091509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 170

摘要

进行跨学科网络科学研究的一个基本部分是拥有有用的、高质量的数据集,为跨学科研究提供价值。在本文中,我们介绍了一个大型的、手工编码的在线骚扰数据语料库。一组研究人员合作开发了一个基于理论的密码本,并标记了35,000条推文。我们得到的数据集大约有15%的正面骚扰案例和85%的负面骚扰案例。这些数据对于训练机器学习模型、识别在线骚扰的文本和语言特征,以及研究骚扰评论的性质和钓鱼文化都很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Large Labeled Corpus for Online Harassment Research
A fundamental part of conducting cross-disciplinary web science research is having useful, high-quality datasets that provide value to studies across disciplines. In this paper, we introduce a large, hand-coded corpus of online harassment data. A team of researchers collaboratively developed a codebook using grounded theory and labeled 35,000 tweets. Our resulting dataset has roughly 15% positive harassment examples and 85% negative examples. This data is useful for training machine learning models, identifying textual and linguistic features of online harassment, and for studying the nature of harassing comments and the culture of trolling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信