自适应进化网络编码算法:一种约束处理方法

C. Ahn, Minkyu Kim
{"title":"自适应进化网络编码算法:一种约束处理方法","authors":"C. Ahn, Minkyu Kim","doi":"10.1109/IWACI.2010.5585171","DOIUrl":null,"url":null,"abstract":"This paper presents a self-adaptive evolutionary network coding algorithm (SA-ENCA) that minimizes the resources of network coding while achieving the target throughput of multicast. The idea is to adaptively engage infeasible solutions as well in searching for better solutions. This is achieved by assigning fitness to the infeasible solutions by balancing corresponding objective function values against constraint violations. Dealing with the constrained network coding problems in an unconstrained manner, SA-ENCA does not suffer from the drawbacks of existing approaches. In other words, it is able to effectively cope with selection noise and automatically discover a feasible seed in the course of evolution. Empirical study has adduced grounds for the effectiveness of the proposed approach.","PeriodicalId":189187,"journal":{"name":"Third International Workshop on Advanced Computational Intelligence","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Self-adaptive evolutionary network coding algorithm: A constraint handling approach\",\"authors\":\"C. Ahn, Minkyu Kim\",\"doi\":\"10.1109/IWACI.2010.5585171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a self-adaptive evolutionary network coding algorithm (SA-ENCA) that minimizes the resources of network coding while achieving the target throughput of multicast. The idea is to adaptively engage infeasible solutions as well in searching for better solutions. This is achieved by assigning fitness to the infeasible solutions by balancing corresponding objective function values against constraint violations. Dealing with the constrained network coding problems in an unconstrained manner, SA-ENCA does not suffer from the drawbacks of existing approaches. In other words, it is able to effectively cope with selection noise and automatically discover a feasible seed in the course of evolution. Empirical study has adduced grounds for the effectiveness of the proposed approach.\",\"PeriodicalId\":189187,\"journal\":{\"name\":\"Third International Workshop on Advanced Computational Intelligence\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Workshop on Advanced Computational Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWACI.2010.5585171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Workshop on Advanced Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWACI.2010.5585171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种自适应进化网络编码算法(SA-ENCA),该算法在实现组播目标吞吐量的同时,最大限度地减少了网络编码资源。这个想法是在寻找更好的解决方案的同时,也适应地采用不可行的解决方案。这是通过平衡相应的目标函数值与约束违反来分配不可行解的适应度来实现的。SA-ENCA以不受约束的方式处理受约束的网络编码问题,没有现有方法的缺点。换句话说,它能够有效地应对选择噪声,在进化过程中自动发现可行的种子。实证研究为提出的方法的有效性提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-adaptive evolutionary network coding algorithm: A constraint handling approach
This paper presents a self-adaptive evolutionary network coding algorithm (SA-ENCA) that minimizes the resources of network coding while achieving the target throughput of multicast. The idea is to adaptively engage infeasible solutions as well in searching for better solutions. This is achieved by assigning fitness to the infeasible solutions by balancing corresponding objective function values against constraint violations. Dealing with the constrained network coding problems in an unconstrained manner, SA-ENCA does not suffer from the drawbacks of existing approaches. In other words, it is able to effectively cope with selection noise and automatically discover a feasible seed in the course of evolution. Empirical study has adduced grounds for the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信