石器时代文化层的地球声学特征:初步有限元模拟

J. Hermand, R. Tayong
{"title":"石器时代文化层的地球声学特征:初步有限元模拟","authors":"J. Hermand, R. Tayong","doi":"10.1109/OCEANS-BERGEN.2013.6608184","DOIUrl":null,"url":null,"abstract":"The use of acoustic methods to detect and map submerged Stone Age sites is of great importance for both the archaeological and underwater acoustics research. This paper presents a preliminary numerical study for the geoacoustic characterization of Stone Age cultural layers. Finite element modelling tools are used to investigate the feasibility of detecting acoustically a submerged flint. The acoustic response of a flint buried in soft sediment is simulated. A realistic condition of the flint submerged in a cultural layer surrounded by seawater, sand, mud and a substrate layer of Moraine is also presented. A theoretical calculation of flint resonance frequencies shows that depending on their characteristics, they can produce a wide range of frequencies beyond 2 kHz as it has been observed experimentally. In this study, a Ricker wavelet source is used to estimate the total and scattered pressure fields due to a flint sample. Simulation of the wave propagation accounts for the variation of the compressional and shear speeds of sound. To detect the submerged flint, the source contains the determined fundamental resonance obtained at 10.6 kHz. Snapshots for different views around the flint are analyzed to detect the effect of the flint sample. A sharp peak is noticed to appear at the given resonance of about 18% the emitting signal for the flint buried inside 5 cm of a cultural layer environment. The case of the flint buried in 15 cm of cultural layer overlying and 100 cm of sand is also computed and presented. This first step modelling indicates that acoustic probing may detect and localize worked flints buried inside soft sediment environment. The other results obtained are analyzed and discussed. The study support the development of a geoacoustic inverse method to characterize submerged flints cores and blades but also the accumulation of flakes.","PeriodicalId":224246,"journal":{"name":"2013 MTS/IEEE OCEANS - Bergen","volume":"352 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Geoacoustic characterization of Stone Age cultural layers: Preliminary FE modelling\",\"authors\":\"J. Hermand, R. Tayong\",\"doi\":\"10.1109/OCEANS-BERGEN.2013.6608184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of acoustic methods to detect and map submerged Stone Age sites is of great importance for both the archaeological and underwater acoustics research. This paper presents a preliminary numerical study for the geoacoustic characterization of Stone Age cultural layers. Finite element modelling tools are used to investigate the feasibility of detecting acoustically a submerged flint. The acoustic response of a flint buried in soft sediment is simulated. A realistic condition of the flint submerged in a cultural layer surrounded by seawater, sand, mud and a substrate layer of Moraine is also presented. A theoretical calculation of flint resonance frequencies shows that depending on their characteristics, they can produce a wide range of frequencies beyond 2 kHz as it has been observed experimentally. In this study, a Ricker wavelet source is used to estimate the total and scattered pressure fields due to a flint sample. Simulation of the wave propagation accounts for the variation of the compressional and shear speeds of sound. To detect the submerged flint, the source contains the determined fundamental resonance obtained at 10.6 kHz. Snapshots for different views around the flint are analyzed to detect the effect of the flint sample. A sharp peak is noticed to appear at the given resonance of about 18% the emitting signal for the flint buried inside 5 cm of a cultural layer environment. The case of the flint buried in 15 cm of cultural layer overlying and 100 cm of sand is also computed and presented. This first step modelling indicates that acoustic probing may detect and localize worked flints buried inside soft sediment environment. The other results obtained are analyzed and discussed. The study support the development of a geoacoustic inverse method to characterize submerged flints cores and blades but also the accumulation of flakes.\",\"PeriodicalId\":224246,\"journal\":{\"name\":\"2013 MTS/IEEE OCEANS - Bergen\",\"volume\":\"352 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 MTS/IEEE OCEANS - Bergen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANS-BERGEN.2013.6608184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 MTS/IEEE OCEANS - Bergen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS-BERGEN.2013.6608184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

利用声学方法探测和绘制石器时代水下遗址,对于考古和水声研究都具有重要意义。本文对石器时代文化层的地声特征进行了初步的数值研究。利用有限元建模工具研究了水下火石声探测的可行性。模拟了埋于软质沉积物中的燧石的声响应。给出了燧石浸没在由海水、沙、泥和冰碛基底层包围的文化层中的现实情况。燧石共振频率的理论计算表明,根据它们的特性,它们可以产生超过2khz的宽范围频率,正如实验所观察到的那样。在本研究中,Ricker小波源用于估计由燧石样品引起的总压力场和分散压力场。声波传播的模拟解释了声波纵、切速的变化。为了检测被淹没的燧石,源包含在10.6 kHz获得的确定的基共振。分析了火石周围不同视图的快照,以检测火石样品的效果。对于埋藏在文化层环境5厘米内的燧石,在给定的共振处出现一个尖锐的峰值,约为发射信号的18%。还计算并介绍了埋在15厘米文化层和100厘米沙子中的燧石的情况。第一步模拟表明,声波探测可以探测和定位埋在软沉积环境中的加工燧石。对得到的其他结果进行了分析和讨论。该研究支持地球声学反演方法的发展,以表征水下燧石的岩心和叶片,以及薄片的积累。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geoacoustic characterization of Stone Age cultural layers: Preliminary FE modelling
The use of acoustic methods to detect and map submerged Stone Age sites is of great importance for both the archaeological and underwater acoustics research. This paper presents a preliminary numerical study for the geoacoustic characterization of Stone Age cultural layers. Finite element modelling tools are used to investigate the feasibility of detecting acoustically a submerged flint. The acoustic response of a flint buried in soft sediment is simulated. A realistic condition of the flint submerged in a cultural layer surrounded by seawater, sand, mud and a substrate layer of Moraine is also presented. A theoretical calculation of flint resonance frequencies shows that depending on their characteristics, they can produce a wide range of frequencies beyond 2 kHz as it has been observed experimentally. In this study, a Ricker wavelet source is used to estimate the total and scattered pressure fields due to a flint sample. Simulation of the wave propagation accounts for the variation of the compressional and shear speeds of sound. To detect the submerged flint, the source contains the determined fundamental resonance obtained at 10.6 kHz. Snapshots for different views around the flint are analyzed to detect the effect of the flint sample. A sharp peak is noticed to appear at the given resonance of about 18% the emitting signal for the flint buried inside 5 cm of a cultural layer environment. The case of the flint buried in 15 cm of cultural layer overlying and 100 cm of sand is also computed and presented. This first step modelling indicates that acoustic probing may detect and localize worked flints buried inside soft sediment environment. The other results obtained are analyzed and discussed. The study support the development of a geoacoustic inverse method to characterize submerged flints cores and blades but also the accumulation of flakes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信