图聚类的正则化对称非负矩阵分解

Ziheng Gao, Naiyang Guan, Longfei Su
{"title":"图聚类的正则化对称非负矩阵分解","authors":"Ziheng Gao, Naiyang Guan, Longfei Su","doi":"10.1109/ICDMW.2018.00062","DOIUrl":null,"url":null,"abstract":"Symmetric non-negative matrix factorization (Sym-NMF) decomposes a high-dimensional symmetric non-negative matrix into a low-dimensional non-negative matrix and has been successfully used in graph clustering. In this paper, we propose a graph regularized symmetric non-negative matrix factorization (GrSymNMF) to enhance its performance in graph clustering. Particularly, GrSymNMF encodes the geometric structure so that the nearby points remain close to each other in the clustering domain. We optimize GrSymNMF by using a greedy coordinate descent algorithm and provide a distributed computing strategy to deploy GrSymNMF to large-scale datasets because it requires few communication overheads among computing nodes. The experiments on complex graph datasets and text corpus datasets verify the performance of GrSymNMF and efficiency, scalability and effectiveness of the distributed strategy of GrSymNMF.","PeriodicalId":259600,"journal":{"name":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Graph Regularized Symmetric Non-Negative Matrix Factorization for Graph Clustering\",\"authors\":\"Ziheng Gao, Naiyang Guan, Longfei Su\",\"doi\":\"10.1109/ICDMW.2018.00062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Symmetric non-negative matrix factorization (Sym-NMF) decomposes a high-dimensional symmetric non-negative matrix into a low-dimensional non-negative matrix and has been successfully used in graph clustering. In this paper, we propose a graph regularized symmetric non-negative matrix factorization (GrSymNMF) to enhance its performance in graph clustering. Particularly, GrSymNMF encodes the geometric structure so that the nearby points remain close to each other in the clustering domain. We optimize GrSymNMF by using a greedy coordinate descent algorithm and provide a distributed computing strategy to deploy GrSymNMF to large-scale datasets because it requires few communication overheads among computing nodes. The experiments on complex graph datasets and text corpus datasets verify the performance of GrSymNMF and efficiency, scalability and effectiveness of the distributed strategy of GrSymNMF.\",\"PeriodicalId\":259600,\"journal\":{\"name\":\"2018 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2018.00062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2018.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

对称非负矩阵分解(symm - nmf)将高维对称非负矩阵分解为低维非负矩阵,并成功地应用于图聚类中。本文提出了一种图正则化对称非负矩阵分解(GrSymNMF)算法来提高其在图聚类中的性能。特别地,GrSymNMF对几何结构进行编码,使得附近的点在聚类域中保持彼此接近。我们使用贪婪坐标下降算法对GrSymNMF进行了优化,并提供了一种分布式计算策略来部署GrSymNMF到大规模数据集,因为它需要很少的计算节点之间的通信开销。在复杂图形数据集和文本语料库数据集上的实验验证了GrSymNMF的性能以及GrSymNMF分布式策略的高效性、可扩展性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph Regularized Symmetric Non-Negative Matrix Factorization for Graph Clustering
Symmetric non-negative matrix factorization (Sym-NMF) decomposes a high-dimensional symmetric non-negative matrix into a low-dimensional non-negative matrix and has been successfully used in graph clustering. In this paper, we propose a graph regularized symmetric non-negative matrix factorization (GrSymNMF) to enhance its performance in graph clustering. Particularly, GrSymNMF encodes the geometric structure so that the nearby points remain close to each other in the clustering domain. We optimize GrSymNMF by using a greedy coordinate descent algorithm and provide a distributed computing strategy to deploy GrSymNMF to large-scale datasets because it requires few communication overheads among computing nodes. The experiments on complex graph datasets and text corpus datasets verify the performance of GrSymNMF and efficiency, scalability and effectiveness of the distributed strategy of GrSymNMF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信