对称幂的双曲性和特殊性

Benoît Cadorel, F. Campana, Erwan Rousseau
{"title":"对称幂的双曲性和特殊性","authors":"Benoît Cadorel, F. Campana, Erwan Rousseau","doi":"10.5802/jep.185","DOIUrl":null,"url":null,"abstract":"Inspired by the computation of the Kodaira dimension of symmetric powers Xm of a complex projective variety X of dimension n ≥ 2 by Arapura and Archava, we study their analytic and algebraic hyperbolic properties. First we show that Xm is special if and only if X is special (except when the core of X is a curve). Then we construct dense entire curves in (suf-ficiently hig) symmetric powers of K3 surfaces and product of curves. We also give a criterion based on the positivity of jet differentials bundles that implies pseudo-hyperbolicity of symmetric powers. As an application, we obtain the Kobayashi hyperbolicity of symmetric powers of generic projective hypersur-faces of sufficiently high degree. On the algebraic side, we give a criterion implying that subvarieties of codimension ≤ n − 2 of symmetric powers are of general type. This applies in particular to varieties with ample cotangent bundles. Finally, based on a metric approach we study symmetric powers of ball quotients.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hyperbolicity and specialness of symmetric powers\",\"authors\":\"Benoît Cadorel, F. Campana, Erwan Rousseau\",\"doi\":\"10.5802/jep.185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired by the computation of the Kodaira dimension of symmetric powers Xm of a complex projective variety X of dimension n ≥ 2 by Arapura and Archava, we study their analytic and algebraic hyperbolic properties. First we show that Xm is special if and only if X is special (except when the core of X is a curve). Then we construct dense entire curves in (suf-ficiently hig) symmetric powers of K3 surfaces and product of curves. We also give a criterion based on the positivity of jet differentials bundles that implies pseudo-hyperbolicity of symmetric powers. As an application, we obtain the Kobayashi hyperbolicity of symmetric powers of generic projective hypersur-faces of sufficiently high degree. On the algebraic side, we give a criterion implying that subvarieties of codimension ≤ n − 2 of symmetric powers are of general type. This applies in particular to varieties with ample cotangent bundles. Finally, based on a metric approach we study symmetric powers of ball quotients.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

受Arapura和Archava计算n≥2维的复射影变量X的对称幂Xm的Kodaira维的启发,我们研究了它们的解析和代数双曲性质。首先,我们证明Xm是特殊的当且仅当X是特殊的(除非X的核心是一条曲线)。然后我们在K3曲面和曲线乘积的(足够高的)对称幂中构造密集的完整曲线。我们还给出了一个基于射流微分束正性的判据,该判据暗示了对称幂的伪双曲性。作为应用,我们得到了足够高次的一般射影超曲面对称幂的Kobayashi双曲性。在代数方面,我们给出了余维数≤n−2的对称幂的子变种是一般型的一个判据。这尤其适用于具有丰富共切束的品种。最后,基于度量方法研究了球商的对称幂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hyperbolicity and specialness of symmetric powers
Inspired by the computation of the Kodaira dimension of symmetric powers Xm of a complex projective variety X of dimension n ≥ 2 by Arapura and Archava, we study their analytic and algebraic hyperbolic properties. First we show that Xm is special if and only if X is special (except when the core of X is a curve). Then we construct dense entire curves in (suf-ficiently hig) symmetric powers of K3 surfaces and product of curves. We also give a criterion based on the positivity of jet differentials bundles that implies pseudo-hyperbolicity of symmetric powers. As an application, we obtain the Kobayashi hyperbolicity of symmetric powers of generic projective hypersur-faces of sufficiently high degree. On the algebraic side, we give a criterion implying that subvarieties of codimension ≤ n − 2 of symmetric powers are of general type. This applies in particular to varieties with ample cotangent bundles. Finally, based on a metric approach we study symmetric powers of ball quotients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信