随机动态系统的概率密度函数控制综述

M. Ren, Qichun Zhang, Jian-hang Zhang
{"title":"随机动态系统的概率密度函数控制综述","authors":"M. Ren, Qichun Zhang, Jian-hang Zhang","doi":"10.23919/ICONAC.2018.8749012","DOIUrl":null,"url":null,"abstract":"Probability density function (PDF) control strategy investigates the controller design approaches in order to to realise a desirable distributions shape control of the random variables for the stochastic processes. Different from the existing stochastic optimisation and control methods, the most important problem of PDF control is to establish the evolution of the PDF expressions of the system variables. Once the relationship between the control input and the output PDF is formulated, the control objective can be described as obtaining the control input signals which would adjust the system output PDFs to follow the pre-specified target PDFs. This paper summarises the recent research results of the PDF control while the controller design approaches can be categorised into three groups: 1) system model-based direct evolution PDF control; 2) model-based distribution-transformation PDF control methods and 3) data-based PDF control. In addition, minimum entropy control, PDF-based filter design, fault diagnosis and probabilistic decoupling design are also introduced briefly as extended applications in theory sense.","PeriodicalId":121030,"journal":{"name":"2018 24th International Conference on Automation and Computing (ICAC)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Survey of the Probability Density Function Control for Stochastic Dynamic Systems\",\"authors\":\"M. Ren, Qichun Zhang, Jian-hang Zhang\",\"doi\":\"10.23919/ICONAC.2018.8749012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Probability density function (PDF) control strategy investigates the controller design approaches in order to to realise a desirable distributions shape control of the random variables for the stochastic processes. Different from the existing stochastic optimisation and control methods, the most important problem of PDF control is to establish the evolution of the PDF expressions of the system variables. Once the relationship between the control input and the output PDF is formulated, the control objective can be described as obtaining the control input signals which would adjust the system output PDFs to follow the pre-specified target PDFs. This paper summarises the recent research results of the PDF control while the controller design approaches can be categorised into three groups: 1) system model-based direct evolution PDF control; 2) model-based distribution-transformation PDF control methods and 3) data-based PDF control. In addition, minimum entropy control, PDF-based filter design, fault diagnosis and probabilistic decoupling design are also introduced briefly as extended applications in theory sense.\",\"PeriodicalId\":121030,\"journal\":{\"name\":\"2018 24th International Conference on Automation and Computing (ICAC)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 24th International Conference on Automation and Computing (ICAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICONAC.2018.8749012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 24th International Conference on Automation and Computing (ICAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICONAC.2018.8749012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

概率密度函数(PDF)控制策略研究了控制器的设计方法,以实现随机过程中随机变量的理想分布形状控制。与现有的随机优化和控制方法不同,PDF控制最重要的问题是建立系统变量的PDF表达式的演化。一旦确定了控制输入和输出PDF之间的关系,控制目标就可以描述为获得控制输入信号,使系统输出PDF遵循预先指定的目标PDF。本文综述了PDF控制的最新研究成果,将控制器设计方法分为三类:1)基于系统模型的直接演化PDF控制;2)基于模型的分布-转换PDF控制方法和3)基于数据的PDF控制方法。此外,还简要介绍了最小熵控制、基于pdf的滤波器设计、故障诊断和概率解耦设计等在理论意义上的扩展应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Survey of the Probability Density Function Control for Stochastic Dynamic Systems
Probability density function (PDF) control strategy investigates the controller design approaches in order to to realise a desirable distributions shape control of the random variables for the stochastic processes. Different from the existing stochastic optimisation and control methods, the most important problem of PDF control is to establish the evolution of the PDF expressions of the system variables. Once the relationship between the control input and the output PDF is formulated, the control objective can be described as obtaining the control input signals which would adjust the system output PDFs to follow the pre-specified target PDFs. This paper summarises the recent research results of the PDF control while the controller design approaches can be categorised into three groups: 1) system model-based direct evolution PDF control; 2) model-based distribution-transformation PDF control methods and 3) data-based PDF control. In addition, minimum entropy control, PDF-based filter design, fault diagnosis and probabilistic decoupling design are also introduced briefly as extended applications in theory sense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信