变形量化代数的L∞导数与参数移位法

G. Sharygin
{"title":"变形量化代数的L∞导数与参数移位法","authors":"G. Sharygin","doi":"10.32817/AMS.1.1.6","DOIUrl":null,"url":null,"abstract":"The argument shift method is a well-known method for generating commutative families of functions in Poisson algebras from central elements and a vector field, verifying a special condition with respect to the Poisson bracket. In this notice we give an analogous construction, which gives one a way to create commutative subalgebras of a deformed algebra from its center (which is as it is well known describable in the terms of the center of the Poisson algebra) and an L∞-differentiation of the algebra of Hochschild cochains, verifying some additional conditions with respect to the Poisson structure.","PeriodicalId":309225,"journal":{"name":"Acta mathematica Spalatensia","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"L∞ - derivations and the argument shift method for deformation quantization algebras\",\"authors\":\"G. Sharygin\",\"doi\":\"10.32817/AMS.1.1.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The argument shift method is a well-known method for generating commutative families of functions in Poisson algebras from central elements and a vector field, verifying a special condition with respect to the Poisson bracket. In this notice we give an analogous construction, which gives one a way to create commutative subalgebras of a deformed algebra from its center (which is as it is well known describable in the terms of the center of the Poisson algebra) and an L∞-differentiation of the algebra of Hochschild cochains, verifying some additional conditions with respect to the Poisson structure.\",\"PeriodicalId\":309225,\"journal\":{\"name\":\"Acta mathematica Spalatensia\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta mathematica Spalatensia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32817/AMS.1.1.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta mathematica Spalatensia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32817/AMS.1.1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

从中心元素和向量场生成泊松代数中函数的交换族,验证了关于泊松括号的一个特殊条件,这是一种众所周知的方法。在本通告中,我们给出了一个类似的构造,它给出了一种从变形代数的中心创建交换子代数的方法(众所周知,这是用泊松代数的中心来描述的)和Hochschild协链代数的L∞微分,验证了关于泊松结构的一些附加条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
L∞ - derivations and the argument shift method for deformation quantization algebras
The argument shift method is a well-known method for generating commutative families of functions in Poisson algebras from central elements and a vector field, verifying a special condition with respect to the Poisson bracket. In this notice we give an analogous construction, which gives one a way to create commutative subalgebras of a deformed algebra from its center (which is as it is well known describable in the terms of the center of the Poisson algebra) and an L∞-differentiation of the algebra of Hochschild cochains, verifying some additional conditions with respect to the Poisson structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信