模糊自适应多模块逼近网络

Wonil Kim, K. Mehrota, C. Mohan
{"title":"模糊自适应多模块逼近网络","authors":"Wonil Kim, K. Mehrota, C. Mohan","doi":"10.1109/NAFIPS.1999.781767","DOIUrl":null,"url":null,"abstract":"The paper presents a fuzzy version of the Adaptive Multi-module Approximation Network. New modules are generated when performance of existing modules is inadequate for some training data, and the applicability of a module to each input vector is determined based on the fuzzy membership of that vector in the possibly asymmetric clusters represented by the reference vectors associated with different modules. The main idea is that for neural networks that rely on a reference vector (for vector quantization, clustering, and similar tasks), the use of fuzzy membership criterion based on the distribution of data (inside different Voronoi cells) may be more appropriate than the traditional approach using a Euclidean metric to determine to which cell each data point belongs.","PeriodicalId":335957,"journal":{"name":"18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy adaptive multi-module approximation network\",\"authors\":\"Wonil Kim, K. Mehrota, C. Mohan\",\"doi\":\"10.1109/NAFIPS.1999.781767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a fuzzy version of the Adaptive Multi-module Approximation Network. New modules are generated when performance of existing modules is inadequate for some training data, and the applicability of a module to each input vector is determined based on the fuzzy membership of that vector in the possibly asymmetric clusters represented by the reference vectors associated with different modules. The main idea is that for neural networks that rely on a reference vector (for vector quantization, clustering, and similar tasks), the use of fuzzy membership criterion based on the distribution of data (inside different Voronoi cells) may be more appropriate than the traditional approach using a Euclidean metric to determine to which cell each data point belongs.\",\"PeriodicalId\":335957,\"journal\":{\"name\":\"18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.1999.781767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.1999.781767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种模糊版本的自适应多模块逼近网络。当现有模块的性能不适合某些训练数据时,生成新模块,并根据该向量在与不同模块相关的参考向量表示的可能不对称的聚类中的模糊隶属度来确定模块对每个输入向量的适用性。主要思想是,对于依赖于参考向量的神经网络(用于矢量量化,聚类和类似任务),使用基于数据分布的模糊隶属度准则(在不同的Voronoi细胞内)可能比使用欧几里德度量来确定每个数据点属于哪个细胞的传统方法更合适。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy adaptive multi-module approximation network
The paper presents a fuzzy version of the Adaptive Multi-module Approximation Network. New modules are generated when performance of existing modules is inadequate for some training data, and the applicability of a module to each input vector is determined based on the fuzzy membership of that vector in the possibly asymmetric clusters represented by the reference vectors associated with different modules. The main idea is that for neural networks that rely on a reference vector (for vector quantization, clustering, and similar tasks), the use of fuzzy membership criterion based on the distribution of data (inside different Voronoi cells) may be more appropriate than the traditional approach using a Euclidean metric to determine to which cell each data point belongs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信