处理状态约束的集论障碍Lyapunov函数逆最优控制

Meryem Deniz, P. L. Devi, S. Balakrishnan
{"title":"处理状态约束的集论障碍Lyapunov函数逆最优控制","authors":"Meryem Deniz, P. L. Devi, S. Balakrishnan","doi":"10.23919/acc45564.2020.9147707","DOIUrl":null,"url":null,"abstract":"Although rigorous framework exists for handling state variable inequality constraints under optimal control formulations, it is quite involved and difficult to incorporate for online use. In this study, an alternative approach is proposed by combining a state-dependent Riccati equation (SDRE) based inverse optimal control formulation with a set-theoretic barrier Lyapunov function (STBLF). Necessary derivations are presented. Both regulator and tracking type problems are considered. The performance of the proposed method is evaluated using numerical examples.","PeriodicalId":288450,"journal":{"name":"2020 American Control Conference (ACC)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inverse Optimal Control with Set-Theoretic Barrier Lyapunov Function for Handling State Constraints\",\"authors\":\"Meryem Deniz, P. L. Devi, S. Balakrishnan\",\"doi\":\"10.23919/acc45564.2020.9147707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although rigorous framework exists for handling state variable inequality constraints under optimal control formulations, it is quite involved and difficult to incorporate for online use. In this study, an alternative approach is proposed by combining a state-dependent Riccati equation (SDRE) based inverse optimal control formulation with a set-theoretic barrier Lyapunov function (STBLF). Necessary derivations are presented. Both regulator and tracking type problems are considered. The performance of the proposed method is evaluated using numerical examples.\",\"PeriodicalId\":288450,\"journal\":{\"name\":\"2020 American Control Conference (ACC)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/acc45564.2020.9147707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/acc45564.2020.9147707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于最优控制公式下的状态变量不等式约束的处理,虽然已有严格的框架,但其复杂性较大,难以纳入在线应用。在这项研究中,提出了一种替代方法,将基于状态相关Riccati方程(SDRE)的逆最优控制公式与集论障碍李雅普诺夫函数(STBLF)相结合。给出了必要的推导。同时考虑了调节型和跟踪型问题。通过数值算例对该方法的性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse Optimal Control with Set-Theoretic Barrier Lyapunov Function for Handling State Constraints
Although rigorous framework exists for handling state variable inequality constraints under optimal control formulations, it is quite involved and difficult to incorporate for online use. In this study, an alternative approach is proposed by combining a state-dependent Riccati equation (SDRE) based inverse optimal control formulation with a set-theoretic barrier Lyapunov function (STBLF). Necessary derivations are presented. Both regulator and tracking type problems are considered. The performance of the proposed method is evaluated using numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信