基于梯度的优化:加速、分布式、异步和随机

Michael I. Jordan
{"title":"基于梯度的优化:加速、分布式、异步和随机","authors":"Michael I. Jordan","doi":"10.1145/3143314.3078506","DOIUrl":null,"url":null,"abstract":"Many new theoretical challenges have arisen in the area of gradient-based optimization for large-scale statistical data analysis, driven by the needs of applications and the opportunities provided by new hardware and software platforms. I discuss several recent results in this area, including: (1) a new framework for understanding Nesterov acceleration, obtained by taking a continuous-time, Lagrangian/Hamiltonian perspective, (2) a general theory of asynchronous optimization in multi-processor systems, (3) a computationally-efficient approach to stochastic variance reduction, (4) a primal-dual methodology for gradient-based optimization that targets communication bottlenecks in distributed systems, and (5) a discussion of how to avoid saddle-points in nonconvex optimization.","PeriodicalId":133673,"journal":{"name":"Proceedings of the 2017 ACM SIGMETRICS / International Conference on Measurement and Modeling of Computer Systems","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On Gradient-Based Optimization: Accelerated, Distributed, Asynchronous and Stochastic\",\"authors\":\"Michael I. Jordan\",\"doi\":\"10.1145/3143314.3078506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many new theoretical challenges have arisen in the area of gradient-based optimization for large-scale statistical data analysis, driven by the needs of applications and the opportunities provided by new hardware and software platforms. I discuss several recent results in this area, including: (1) a new framework for understanding Nesterov acceleration, obtained by taking a continuous-time, Lagrangian/Hamiltonian perspective, (2) a general theory of asynchronous optimization in multi-processor systems, (3) a computationally-efficient approach to stochastic variance reduction, (4) a primal-dual methodology for gradient-based optimization that targets communication bottlenecks in distributed systems, and (5) a discussion of how to avoid saddle-points in nonconvex optimization.\",\"PeriodicalId\":133673,\"journal\":{\"name\":\"Proceedings of the 2017 ACM SIGMETRICS / International Conference on Measurement and Modeling of Computer Systems\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM SIGMETRICS / International Conference on Measurement and Modeling of Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3143314.3078506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM SIGMETRICS / International Conference on Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3143314.3078506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在应用需求和新软硬件平台机遇的推动下,基于梯度的大规模统计数据分析优化领域出现了许多新的理论挑战。我将讨论这一领域的几个最新成果,包括:(1)从连续时间、拉格朗日/哈密顿角度获得了理解Nesterov加速的新框架;(2)多处理器系统中异步优化的一般理论;(3)随机方差减少的高效计算方法;(4)针对分布式系统中通信瓶颈的基于梯度的优化的原始对偶方法;(5)讨论如何避免非凸优化中的鞍点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Gradient-Based Optimization: Accelerated, Distributed, Asynchronous and Stochastic
Many new theoretical challenges have arisen in the area of gradient-based optimization for large-scale statistical data analysis, driven by the needs of applications and the opportunities provided by new hardware and software platforms. I discuss several recent results in this area, including: (1) a new framework for understanding Nesterov acceleration, obtained by taking a continuous-time, Lagrangian/Hamiltonian perspective, (2) a general theory of asynchronous optimization in multi-processor systems, (3) a computationally-efficient approach to stochastic variance reduction, (4) a primal-dual methodology for gradient-based optimization that targets communication bottlenecks in distributed systems, and (5) a discussion of how to avoid saddle-points in nonconvex optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信