基于深度聚类自编码器的鲁棒PCA特征选择辅助网络异常检测

Van Quan Nguyen, V. H. Nguyen, V. Cao, N. L. Khac, Nathan Shone
{"title":"基于深度聚类自编码器的鲁棒PCA特征选择辅助网络异常检测","authors":"Van Quan Nguyen, V. H. Nguyen, V. Cao, N. L. Khac, Nathan Shone","doi":"10.1109/NICS54270.2021.9701456","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method to enhance the performance of Clustering-based Autoencoder models for network anomaly detection. Previous studies have developed regularized variants of Autoencoders to learn the latent representation of normal data in a semi-supervised manner, including Shrink Autoencoder, Dirac Delta Variational Autoencoder and Clustering-based Autoencoder. However, there are concerns regarding the feature selection of the original data, which stronger support Autoencoders models exploring more intrinsic, meaningful and latent features at bottleneck. The method proposed involves combining Principal Component Analysis and Clustering-based Autoencoder. Specifically, PCA is used for the selection of new data representation space, aiming to better assist CAE in learning the latent, prominent features of normal data, which addresses the aforementioned concerns. The proposed method is evaluated using the standard benchmark NSL-KDD data set and four scenarios of the CTU13 datasets. The promising experimental results confirm the improvements offered by the proposed approach, in comparison to existing methods. Therefore, it suggests a strong potential application within modern network anomaly detection systems.","PeriodicalId":296963,"journal":{"name":"2021 8th NAFOSTED Conference on Information and Computer Science (NICS)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Robust PCA Feature Selection To Assist Deep Clustering Autoencoder-Based Network Anomaly Detection\",\"authors\":\"Van Quan Nguyen, V. H. Nguyen, V. Cao, N. L. Khac, Nathan Shone\",\"doi\":\"10.1109/NICS54270.2021.9701456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel method to enhance the performance of Clustering-based Autoencoder models for network anomaly detection. Previous studies have developed regularized variants of Autoencoders to learn the latent representation of normal data in a semi-supervised manner, including Shrink Autoencoder, Dirac Delta Variational Autoencoder and Clustering-based Autoencoder. However, there are concerns regarding the feature selection of the original data, which stronger support Autoencoders models exploring more intrinsic, meaningful and latent features at bottleneck. The method proposed involves combining Principal Component Analysis and Clustering-based Autoencoder. Specifically, PCA is used for the selection of new data representation space, aiming to better assist CAE in learning the latent, prominent features of normal data, which addresses the aforementioned concerns. The proposed method is evaluated using the standard benchmark NSL-KDD data set and four scenarios of the CTU13 datasets. The promising experimental results confirm the improvements offered by the proposed approach, in comparison to existing methods. Therefore, it suggests a strong potential application within modern network anomaly detection systems.\",\"PeriodicalId\":296963,\"journal\":{\"name\":\"2021 8th NAFOSTED Conference on Information and Computer Science (NICS)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 8th NAFOSTED Conference on Information and Computer Science (NICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NICS54270.2021.9701456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th NAFOSTED Conference on Information and Computer Science (NICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NICS54270.2021.9701456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的方法来提高基于聚类的自编码器模型在网络异常检测中的性能。以前的研究已经开发了正则化的自编码器,以半监督的方式学习正常数据的潜在表示,包括收缩自编码器、狄拉克变分自编码器和基于聚类的自编码器。然而,在原始数据的特征选择方面存在一些问题,这些问题更支持Autoencoders模型在瓶颈处探索更多内在的、有意义的和潜在的特征。该方法将主成分分析和基于聚类的自编码器相结合。具体来说,PCA用于选择新的数据表示空间,旨在更好地帮助CAE学习正常数据的潜在的、突出的特征,解决了上述问题。使用标准基准NSL-KDD数据集和CTU13数据集的四个场景对所提出的方法进行了评估。与现有的方法相比,有希望的实验结果证实了所提出的方法所提供的改进。因此,它在现代网络异常检测系统中具有很强的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust PCA Feature Selection To Assist Deep Clustering Autoencoder-Based Network Anomaly Detection
This paper presents a novel method to enhance the performance of Clustering-based Autoencoder models for network anomaly detection. Previous studies have developed regularized variants of Autoencoders to learn the latent representation of normal data in a semi-supervised manner, including Shrink Autoencoder, Dirac Delta Variational Autoencoder and Clustering-based Autoencoder. However, there are concerns regarding the feature selection of the original data, which stronger support Autoencoders models exploring more intrinsic, meaningful and latent features at bottleneck. The method proposed involves combining Principal Component Analysis and Clustering-based Autoencoder. Specifically, PCA is used for the selection of new data representation space, aiming to better assist CAE in learning the latent, prominent features of normal data, which addresses the aforementioned concerns. The proposed method is evaluated using the standard benchmark NSL-KDD data set and four scenarios of the CTU13 datasets. The promising experimental results confirm the improvements offered by the proposed approach, in comparison to existing methods. Therefore, it suggests a strong potential application within modern network anomaly detection systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信