花冠多项式:半边上的图多项式

D. Kreimer
{"title":"花冠多项式:半边上的图多项式","authors":"D. Kreimer","doi":"10.22323/1.303.0068","DOIUrl":null,"url":null,"abstract":"The study of Feynman rules is much facilitated by the two Symanzik polynomials, homogeneous polynomials based on edge variables for a given Feynman graph. We review here the role of a recently discovered third graph polynomial based on half-edges which facilitates the transition from scalar to gauge theory amplitudes: the corolla polynomial. We review in particular the use of graph homology in the construction of this polynomial.","PeriodicalId":140132,"journal":{"name":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)","volume":"62 37","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"The corolla polynomial: a graph polynomial on half-edges\",\"authors\":\"D. Kreimer\",\"doi\":\"10.22323/1.303.0068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of Feynman rules is much facilitated by the two Symanzik polynomials, homogeneous polynomials based on edge variables for a given Feynman graph. We review here the role of a recently discovered third graph polynomial based on half-edges which facilitates the transition from scalar to gauge theory amplitudes: the corolla polynomial. We review in particular the use of graph homology in the construction of this polynomial.\",\"PeriodicalId\":140132,\"journal\":{\"name\":\"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)\",\"volume\":\"62 37\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.303.0068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.303.0068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

费曼规则的研究是由两个赛门齐克多项式,齐次多项式基于边缘变量的给定费曼图。我们在这里回顾了最近发现的基于半边的第三种图多项式的作用,它促进了从标量到规范理论振幅的过渡:花冠多项式。我们特别回顾了图同调在构造这个多项式中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The corolla polynomial: a graph polynomial on half-edges
The study of Feynman rules is much facilitated by the two Symanzik polynomials, homogeneous polynomials based on edge variables for a given Feynman graph. We review here the role of a recently discovered third graph polynomial based on half-edges which facilitates the transition from scalar to gauge theory amplitudes: the corolla polynomial. We review in particular the use of graph homology in the construction of this polynomial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信