面向服务组合的多智能体强化学习模型

Hongbing Wang, Xiaojun Wang, Xuan Zhou
{"title":"面向服务组合的多智能体强化学习模型","authors":"Hongbing Wang, Xiaojun Wang, Xuan Zhou","doi":"10.1109/SCC.2012.58","DOIUrl":null,"url":null,"abstract":"This paper describes a multi-agent reinforcement learning model for the optimization of Web service composition. Based on the model, we propose a multiagent Q-learning algorithm, where each agent would benefit from the advice of other agents in team. In contrast to single-agent reinforcement learning, our algorithm can speed up convergence to optimal policy. In addition, it allows composite service to dynamically adjust itself to fit the varying environment, where the properties of the component services continue changing. Our experiments demonstrate the efficiency of our algorithm.","PeriodicalId":178841,"journal":{"name":"2012 IEEE Ninth International Conference on Services Computing","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Multi-agent Reinforcement Learning Model for Service Composition\",\"authors\":\"Hongbing Wang, Xiaojun Wang, Xuan Zhou\",\"doi\":\"10.1109/SCC.2012.58\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a multi-agent reinforcement learning model for the optimization of Web service composition. Based on the model, we propose a multiagent Q-learning algorithm, where each agent would benefit from the advice of other agents in team. In contrast to single-agent reinforcement learning, our algorithm can speed up convergence to optimal policy. In addition, it allows composite service to dynamically adjust itself to fit the varying environment, where the properties of the component services continue changing. Our experiments demonstrate the efficiency of our algorithm.\",\"PeriodicalId\":178841,\"journal\":{\"name\":\"2012 IEEE Ninth International Conference on Services Computing\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Ninth International Conference on Services Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCC.2012.58\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Ninth International Conference on Services Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCC.2012.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种用于Web服务组合优化的多智能体强化学习模型。在此基础上,我们提出了一种多智能体q学习算法,其中每个智能体都可以从团队中其他智能体的建议中获益。与单智能体强化学习相比,我们的算法可以加速收敛到最优策略。此外,它允许组合服务动态调整自身以适应不断变化的环境,其中组件服务的属性不断变化。实验证明了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-agent Reinforcement Learning Model for Service Composition
This paper describes a multi-agent reinforcement learning model for the optimization of Web service composition. Based on the model, we propose a multiagent Q-learning algorithm, where each agent would benefit from the advice of other agents in team. In contrast to single-agent reinforcement learning, our algorithm can speed up convergence to optimal policy. In addition, it allows composite service to dynamically adjust itself to fit the varying environment, where the properties of the component services continue changing. Our experiments demonstrate the efficiency of our algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信