基于椭圆标记的弱监督有丝分裂检测

Xiaoxue Liu, Xinwei Li, Wei Zhang, Peng Ran, Bing-qing Zhang, Zhangyong Li
{"title":"基于椭圆标记的弱监督有丝分裂检测","authors":"Xiaoxue Liu, Xinwei Li, Wei Zhang, Peng Ran, Bing-qing Zhang, Zhangyong Li","doi":"10.1145/3448734.3450486","DOIUrl":null,"url":null,"abstract":"Automatic mitosis detection in breast histopathology cancerous tissue areas has become an important research topic recently. This paper proposed a deep learning scheme with ellipse labels for weakly supervised mitosis detection in breast histopathology images. The training labels of mitosis data are usually given only the centroid of a mitotic cell, rather than annotated every pixel of the mitosis region. The centroid labels are weak labels which are not sufficient for training a mitosis detection model. To tackle this problem, we expand the single-pixel labels to ellipse labels. We add attention mechanisms to the FPN structure of Mask R-CNN to localize and classify miotic cells. We evaluate our method on the weakly annotated 2014 ICPR MITOS-ATYPIA challenge dataset. The evaluation experiments demonstrated that our method achieved better performance compared with the baseline model and other methods, with the F-score of 0.595 in our detection task.","PeriodicalId":105999,"journal":{"name":"The 2nd International Conference on Computing and Data Science","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weakly supervised mitosis detection using ellipse label on attention Mask R-CNN\",\"authors\":\"Xiaoxue Liu, Xinwei Li, Wei Zhang, Peng Ran, Bing-qing Zhang, Zhangyong Li\",\"doi\":\"10.1145/3448734.3450486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic mitosis detection in breast histopathology cancerous tissue areas has become an important research topic recently. This paper proposed a deep learning scheme with ellipse labels for weakly supervised mitosis detection in breast histopathology images. The training labels of mitosis data are usually given only the centroid of a mitotic cell, rather than annotated every pixel of the mitosis region. The centroid labels are weak labels which are not sufficient for training a mitosis detection model. To tackle this problem, we expand the single-pixel labels to ellipse labels. We add attention mechanisms to the FPN structure of Mask R-CNN to localize and classify miotic cells. We evaluate our method on the weakly annotated 2014 ICPR MITOS-ATYPIA challenge dataset. The evaluation experiments demonstrated that our method achieved better performance compared with the baseline model and other methods, with the F-score of 0.595 in our detection task.\",\"PeriodicalId\":105999,\"journal\":{\"name\":\"The 2nd International Conference on Computing and Data Science\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2nd International Conference on Computing and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3448734.3450486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd International Conference on Computing and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3448734.3450486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

乳腺组织病理学癌组织区有丝分裂自动检测已成为近年来的重要研究课题。本文提出了一种基于椭圆标记的深度学习方法,用于乳腺组织病理图像中弱监督有丝分裂的检测。有丝分裂数据的训练标记通常只给出有丝分裂细胞的质心,而不是标注有丝分裂区域的每个像素。质心标记是弱标记,不足以训练有丝分裂检测模型。为了解决这个问题,我们将单像素标签扩展为椭圆标签。我们在Mask R-CNN的FPN结构中加入了注意机制来定位和分类有胞分裂细胞。我们在弱注释的2014 ICPR MITOS-ATYPIA挑战数据集上评估了我们的方法。评价实验表明,与基线模型和其他方法相比,我们的方法取得了更好的性能,在我们的检测任务中f得分为0.595。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weakly supervised mitosis detection using ellipse label on attention Mask R-CNN
Automatic mitosis detection in breast histopathology cancerous tissue areas has become an important research topic recently. This paper proposed a deep learning scheme with ellipse labels for weakly supervised mitosis detection in breast histopathology images. The training labels of mitosis data are usually given only the centroid of a mitotic cell, rather than annotated every pixel of the mitosis region. The centroid labels are weak labels which are not sufficient for training a mitosis detection model. To tackle this problem, we expand the single-pixel labels to ellipse labels. We add attention mechanisms to the FPN structure of Mask R-CNN to localize and classify miotic cells. We evaluate our method on the weakly annotated 2014 ICPR MITOS-ATYPIA challenge dataset. The evaluation experiments demonstrated that our method achieved better performance compared with the baseline model and other methods, with the F-score of 0.595 in our detection task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信