MWMOTE的应用是解决信用风险分类中的阶级失衡

Maria Ulfah, Triando Hamonangan Saragih, Dwi Kartini, Muhammad Itqan Mazdadi, Friska Abadi
{"title":"MWMOTE的应用是解决信用风险分类中的阶级失衡","authors":"Maria Ulfah, Triando Hamonangan Saragih, Dwi Kartini, Muhammad Itqan Mazdadi, Friska Abadi","doi":"10.33795/jip.v9i4.1331","DOIUrl":null,"url":null,"abstract":"Salah satu bentuk usaha yang dijalankan oleh perbankan adalah pemberian kredit terhadap nasabaah. Bank akan selalu berusaha mengoptimalkan penyaluran kredit terhadap nasabah, akan tetapi  tidak menutup kemungkinan bahwa kredit yang diberikan tersebut memiliki risiko. Guna menekan dan meminimalisir risiko kredit pihak bank perlu melakukan analisis terhadap data yang dimiliki nasabah agar dapat mengambil keputusan apakah nasabah atau calon debitur layak diberikan pinjaman dalam bentuk kredit.  Salah satu cara untuk menyelesaikan masalah analisa risiko kredit adalah dengan melakukan klasifikasi dengan menggunakan machine learning. Pada penelitian ini dilakukan klasifikasi dengan menggunakan algoritma Support Vector Machine (SVM) serta oversampling data dengan menggunakan MWMOTE dan Improve MWMOTE. Data yang digunakan pada penelitian ini adalah data german credit risk  yang memiliki Kelas bad credit yang terdiri atas 300 data dan kelas good credit terdiri atas 700 data. Penelitian dilakukan dengan membandingkan klasifikasi SVM dengan dan tanpa oversampling. Hasilnya didapatkan bahwa nilai akurasi dari klasifikasi Improve MWMOTE SVM memiliki nilai tertinggi jika dibandingan dengan SVM MWMOTE, dan SVM yaitu sebesar 77,95%.","PeriodicalId":232501,"journal":{"name":"Jurnal Informatika Polinema","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PENERAPAN MWMOTE UNTUK MENGATASI KETIDAKSEIMBANGAN KELAS PADA KLASIFIKASI RISIKO KREDIT\",\"authors\":\"Maria Ulfah, Triando Hamonangan Saragih, Dwi Kartini, Muhammad Itqan Mazdadi, Friska Abadi\",\"doi\":\"10.33795/jip.v9i4.1331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Salah satu bentuk usaha yang dijalankan oleh perbankan adalah pemberian kredit terhadap nasabaah. Bank akan selalu berusaha mengoptimalkan penyaluran kredit terhadap nasabah, akan tetapi  tidak menutup kemungkinan bahwa kredit yang diberikan tersebut memiliki risiko. Guna menekan dan meminimalisir risiko kredit pihak bank perlu melakukan analisis terhadap data yang dimiliki nasabah agar dapat mengambil keputusan apakah nasabah atau calon debitur layak diberikan pinjaman dalam bentuk kredit.  Salah satu cara untuk menyelesaikan masalah analisa risiko kredit adalah dengan melakukan klasifikasi dengan menggunakan machine learning. Pada penelitian ini dilakukan klasifikasi dengan menggunakan algoritma Support Vector Machine (SVM) serta oversampling data dengan menggunakan MWMOTE dan Improve MWMOTE. Data yang digunakan pada penelitian ini adalah data german credit risk  yang memiliki Kelas bad credit yang terdiri atas 300 data dan kelas good credit terdiri atas 700 data. Penelitian dilakukan dengan membandingkan klasifikasi SVM dengan dan tanpa oversampling. Hasilnya didapatkan bahwa nilai akurasi dari klasifikasi Improve MWMOTE SVM memiliki nilai tertinggi jika dibandingan dengan SVM MWMOTE, dan SVM yaitu sebesar 77,95%.\",\"PeriodicalId\":232501,\"journal\":{\"name\":\"Jurnal Informatika Polinema\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Informatika Polinema\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33795/jip.v9i4.1331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika Polinema","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33795/jip.v9i4.1331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

银行经营的一项业务是向纳萨巴银行提供信贷。银行将永远努力优化对客户的信贷额度,但不排除任何信贷有风险的可能性。为了遏制和减低银行信贷风险,必须对客户所拥有的数据进行分析,以确定客户或未来债务人是否值得以信用形式发放贷款。解决信贷风险分析问题的一种方法是使用学习机器进行分类。在这项研究中,使用SVM支持算法(SVM)以及使用MWMOTE和Improve MWMOTE进行分类。该研究使用的数据是德国信贷风险数据,该数据由300个坏信用等级和700个好信用等级组成。这项研究是通过比较SVM分类而不进行抽样。结果发现,与SVM MWMOTE相比,植入MWMOTE的准确性是最高的,而SVM的得分为77.95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PENERAPAN MWMOTE UNTUK MENGATASI KETIDAKSEIMBANGAN KELAS PADA KLASIFIKASI RISIKO KREDIT
Salah satu bentuk usaha yang dijalankan oleh perbankan adalah pemberian kredit terhadap nasabaah. Bank akan selalu berusaha mengoptimalkan penyaluran kredit terhadap nasabah, akan tetapi  tidak menutup kemungkinan bahwa kredit yang diberikan tersebut memiliki risiko. Guna menekan dan meminimalisir risiko kredit pihak bank perlu melakukan analisis terhadap data yang dimiliki nasabah agar dapat mengambil keputusan apakah nasabah atau calon debitur layak diberikan pinjaman dalam bentuk kredit.  Salah satu cara untuk menyelesaikan masalah analisa risiko kredit adalah dengan melakukan klasifikasi dengan menggunakan machine learning. Pada penelitian ini dilakukan klasifikasi dengan menggunakan algoritma Support Vector Machine (SVM) serta oversampling data dengan menggunakan MWMOTE dan Improve MWMOTE. Data yang digunakan pada penelitian ini adalah data german credit risk  yang memiliki Kelas bad credit yang terdiri atas 300 data dan kelas good credit terdiri atas 700 data. Penelitian dilakukan dengan membandingkan klasifikasi SVM dengan dan tanpa oversampling. Hasilnya didapatkan bahwa nilai akurasi dari klasifikasi Improve MWMOTE SVM memiliki nilai tertinggi jika dibandingan dengan SVM MWMOTE, dan SVM yaitu sebesar 77,95%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信