航迹增强和合成数据辅助无人机探测

F. C. Akyon, Ogulcan Eryuksel, Kamil Anil Ozfuttu, S. Altinuc
{"title":"航迹增强和合成数据辅助无人机探测","authors":"F. C. Akyon, Ogulcan Eryuksel, Kamil Anil Ozfuttu, S. Altinuc","doi":"10.1109/AVSS52988.2021.9663759","DOIUrl":null,"url":null,"abstract":"As the usage of drones increases with lowered costs and improved drone technology, drone detection emerges as a vital object detection task. However, detecting distant drones under unfavorable conditions, namely weak contrast, long-range, low visibility, requires effective algorithms. Our method approaches the drone detection problem by fine-tuning a YOLOv5 model with real and synthetically generated data using a Kalman-based object tracker to boost detection confidence. Our results indicate that augmenting the real data with an optimal subset of synthetic data can increase the performance. Moreover, temporal information gathered by object tracking methods can increase performance further.","PeriodicalId":246327,"journal":{"name":"2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Track Boosting and Synthetic Data Aided Drone Detection\",\"authors\":\"F. C. Akyon, Ogulcan Eryuksel, Kamil Anil Ozfuttu, S. Altinuc\",\"doi\":\"10.1109/AVSS52988.2021.9663759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the usage of drones increases with lowered costs and improved drone technology, drone detection emerges as a vital object detection task. However, detecting distant drones under unfavorable conditions, namely weak contrast, long-range, low visibility, requires effective algorithms. Our method approaches the drone detection problem by fine-tuning a YOLOv5 model with real and synthetically generated data using a Kalman-based object tracker to boost detection confidence. Our results indicate that augmenting the real data with an optimal subset of synthetic data can increase the performance. Moreover, temporal information gathered by object tracking methods can increase performance further.\",\"PeriodicalId\":246327,\"journal\":{\"name\":\"2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS52988.2021.9663759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 17th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS52988.2021.9663759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

随着无人机使用的增加、成本的降低和无人机技术的改进,无人机检测成为一项重要的目标检测任务。然而,在对比度弱、距离远、能见度低等不利条件下检测远距离无人机,需要有效的算法。我们的方法通过使用基于卡尔曼的目标跟踪器对具有真实和综合生成数据的YOLOv5模型进行微调来提高检测置信度,从而解决无人机检测问题。我们的结果表明,用合成数据的最优子集扩充真实数据可以提高性能。此外,目标跟踪方法收集的时间信息可以进一步提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Track Boosting and Synthetic Data Aided Drone Detection
As the usage of drones increases with lowered costs and improved drone technology, drone detection emerges as a vital object detection task. However, detecting distant drones under unfavorable conditions, namely weak contrast, long-range, low visibility, requires effective algorithms. Our method approaches the drone detection problem by fine-tuning a YOLOv5 model with real and synthetically generated data using a Kalman-based object tracker to boost detection confidence. Our results indicate that augmenting the real data with an optimal subset of synthetic data can increase the performance. Moreover, temporal information gathered by object tracking methods can increase performance further.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信