学习Parseval框架的框架透视稀疏表示

Ping-Tzan Huang, W. Hwang, T. Jong
{"title":"学习Parseval框架的框架透视稀疏表示","authors":"Ping-Tzan Huang, W. Hwang, T. Jong","doi":"10.1109/ICIP.2018.8451713","DOIUrl":null,"url":null,"abstract":"Frames are the foundation of the linear operators used in the decomposition and reconstruction of signals, such as the discrete Fourier transform, Gabor, wavelets, and curvelet transforms. The emergence of sparse representation models has shifted of the emphasis of signal representation in frame theory toward sparse $l_{1}$ -minimization problems. In this paper, we apply frame theory to the sparse representation of signals in which a synthesis dictionary is used for a frame and an analysis dictionary is used for a dual frame. We developed a novel dictionary learning algorithm (called Parseval K-SVD) to learn a tight-frame dictionary. We then leveraged the analysis and synthesis perspectives of signal representation with frames to derive optimization formulations for problems pertaining to image recovery. Our preliminary results demonstrate that the images recovered using this approach are correlated to the frame bounds of dictionaries, thereby demonstrating the importance of using different dictionaries for different applications.","PeriodicalId":147245,"journal":{"name":"International Conference on Information Photonics","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Learning Parseval Frames for Sparse Representation with Frame Perspective\",\"authors\":\"Ping-Tzan Huang, W. Hwang, T. Jong\",\"doi\":\"10.1109/ICIP.2018.8451713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frames are the foundation of the linear operators used in the decomposition and reconstruction of signals, such as the discrete Fourier transform, Gabor, wavelets, and curvelet transforms. The emergence of sparse representation models has shifted of the emphasis of signal representation in frame theory toward sparse $l_{1}$ -minimization problems. In this paper, we apply frame theory to the sparse representation of signals in which a synthesis dictionary is used for a frame and an analysis dictionary is used for a dual frame. We developed a novel dictionary learning algorithm (called Parseval K-SVD) to learn a tight-frame dictionary. We then leveraged the analysis and synthesis perspectives of signal representation with frames to derive optimization formulations for problems pertaining to image recovery. Our preliminary results demonstrate that the images recovered using this approach are correlated to the frame bounds of dictionaries, thereby demonstrating the importance of using different dictionaries for different applications.\",\"PeriodicalId\":147245,\"journal\":{\"name\":\"International Conference on Information Photonics\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Information Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2018.8451713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2018.8451713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

帧是用于信号分解和重构的线性算子的基础,如离散傅里叶变换、Gabor变换、小波变换和曲线变换。稀疏表示模型的出现使框架理论中信号表示的重点转向了稀疏最小化问题。本文将框架理论应用于信号的稀疏表示,其中对一帧使用合成字典,对偶帧使用分析字典。我们开发了一种新的字典学习算法(称为Parseval K-SVD)来学习紧框架字典。然后,我们利用帧信号表示的分析和综合观点,推导出与图像恢复有关的问题的优化公式。我们的初步结果表明,使用该方法恢复的图像与字典的帧边界相关,从而证明了针对不同应用使用不同字典的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Parseval Frames for Sparse Representation with Frame Perspective
Frames are the foundation of the linear operators used in the decomposition and reconstruction of signals, such as the discrete Fourier transform, Gabor, wavelets, and curvelet transforms. The emergence of sparse representation models has shifted of the emphasis of signal representation in frame theory toward sparse $l_{1}$ -minimization problems. In this paper, we apply frame theory to the sparse representation of signals in which a synthesis dictionary is used for a frame and an analysis dictionary is used for a dual frame. We developed a novel dictionary learning algorithm (called Parseval K-SVD) to learn a tight-frame dictionary. We then leveraged the analysis and synthesis perspectives of signal representation with frames to derive optimization formulations for problems pertaining to image recovery. Our preliminary results demonstrate that the images recovered using this approach are correlated to the frame bounds of dictionaries, thereby demonstrating the importance of using different dictionaries for different applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信