趋势与季节时间序列的混合预测方法

Doan Ngoc Bao, Ngo Duy Khanh Vy, D. T. Anh
{"title":"趋势与季节时间序列的混合预测方法","authors":"Doan Ngoc Bao, Ngo Duy Khanh Vy, D. T. Anh","doi":"10.1109/RIVF.2013.6719894","DOIUrl":null,"url":null,"abstract":"Forecasting of time series that have trend and seasonal variations remains an important problem for forecasters. In this work, a hybrid method which combines Winters' exponential smoothing method and neural network is proposed for forecasting seasonal and trend time series. The proposed method aims to integrate the linear characteristics of an exponential smoothing model and nonlinear characteristics of neural network to create a more effective model for time series forecasting. Experimental results show that the hybrid method outperforms neural network model in forecasting seasonal and trend time series.","PeriodicalId":121216,"journal":{"name":"The 2013 RIVF International Conference on Computing & Communication Technologies - Research, Innovation, and Vision for Future (RIVF)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A hybrid method for forecasting trend and seasonal time series\",\"authors\":\"Doan Ngoc Bao, Ngo Duy Khanh Vy, D. T. Anh\",\"doi\":\"10.1109/RIVF.2013.6719894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forecasting of time series that have trend and seasonal variations remains an important problem for forecasters. In this work, a hybrid method which combines Winters' exponential smoothing method and neural network is proposed for forecasting seasonal and trend time series. The proposed method aims to integrate the linear characteristics of an exponential smoothing model and nonlinear characteristics of neural network to create a more effective model for time series forecasting. Experimental results show that the hybrid method outperforms neural network model in forecasting seasonal and trend time series.\",\"PeriodicalId\":121216,\"journal\":{\"name\":\"The 2013 RIVF International Conference on Computing & Communication Technologies - Research, Innovation, and Vision for Future (RIVF)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2013 RIVF International Conference on Computing & Communication Technologies - Research, Innovation, and Vision for Future (RIVF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RIVF.2013.6719894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 RIVF International Conference on Computing & Communication Technologies - Research, Innovation, and Vision for Future (RIVF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RIVF.2013.6719894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

预测具有趋势和季节变化的时间序列仍然是预报员面临的一个重要问题。本文提出了一种将温特斯指数平滑法与神经网络相结合的季节和趋势时间序列预测方法。该方法旨在将指数平滑模型的线性特性与神经网络的非线性特性相结合,建立更有效的时间序列预测模型。实验结果表明,该方法在季节和趋势时间序列预测方面优于神经网络模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid method for forecasting trend and seasonal time series
Forecasting of time series that have trend and seasonal variations remains an important problem for forecasters. In this work, a hybrid method which combines Winters' exponential smoothing method and neural network is proposed for forecasting seasonal and trend time series. The proposed method aims to integrate the linear characteristics of an exponential smoothing model and nonlinear characteristics of neural network to create a more effective model for time series forecasting. Experimental results show that the hybrid method outperforms neural network model in forecasting seasonal and trend time series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信