神经网络结构与权值的粒子群优化

Marcio Carvalho, Teresa B Ludermir
{"title":"神经网络结构与权值的粒子群优化","authors":"Marcio Carvalho, Teresa B Ludermir","doi":"10.1109/HIS.2007.45","DOIUrl":null,"url":null,"abstract":"The optimization of architecture and weights of feed forward neural networks is a complex task of great importance in problems of supervised learning. In this work we analyze the use of the particle swarm optimization algorithm for the optimization of neural network architectures and weights aiming better generalization performances through the creation of a compromise between low architectural complexity and low training errors. For evaluating these algorithms we apply them to benchmark classification problems of the medical field. The results showed that a PSO-PSO based approach represents a valid alternative to optimize weights and architectures of MLP neural networks.","PeriodicalId":359991,"journal":{"name":"7th International Conference on Hybrid Intelligent Systems (HIS 2007)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Particle Swarm Optimization of Neural Network Architectures andWeights\",\"authors\":\"Marcio Carvalho, Teresa B Ludermir\",\"doi\":\"10.1109/HIS.2007.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimization of architecture and weights of feed forward neural networks is a complex task of great importance in problems of supervised learning. In this work we analyze the use of the particle swarm optimization algorithm for the optimization of neural network architectures and weights aiming better generalization performances through the creation of a compromise between low architectural complexity and low training errors. For evaluating these algorithms we apply them to benchmark classification problems of the medical field. The results showed that a PSO-PSO based approach represents a valid alternative to optimize weights and architectures of MLP neural networks.\",\"PeriodicalId\":359991,\"journal\":{\"name\":\"7th International Conference on Hybrid Intelligent Systems (HIS 2007)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th International Conference on Hybrid Intelligent Systems (HIS 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIS.2007.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Hybrid Intelligent Systems (HIS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2007.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

在监督学习问题中,前馈神经网络的结构和权值优化是一项非常重要的复杂任务。在这项工作中,我们分析了粒子群优化算法在神经网络架构和权重优化中的应用,通过在低架构复杂性和低训练误差之间建立妥协,实现更好的泛化性能。为了评估这些算法,我们将它们应用于医学领域的基准分类问题。结果表明,基于PSO-PSO的方法是优化MLP神经网络权重和结构的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Particle Swarm Optimization of Neural Network Architectures andWeights
The optimization of architecture and weights of feed forward neural networks is a complex task of great importance in problems of supervised learning. In this work we analyze the use of the particle swarm optimization algorithm for the optimization of neural network architectures and weights aiming better generalization performances through the creation of a compromise between low architectural complexity and low training errors. For evaluating these algorithms we apply them to benchmark classification problems of the medical field. The results showed that a PSO-PSO based approach represents a valid alternative to optimize weights and architectures of MLP neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信