基于平均过程极值的随机准脆性介质断裂解析模型

M. Vořechovský
{"title":"基于平均过程极值的随机准脆性介质断裂解析模型","authors":"M. Vořechovský","doi":"10.7712/120221.8035.18924","DOIUrl":null,"url":null,"abstract":". The paper presents an analytical model for prediction of the peak force in concrete specimens loaded in bending (both notched and unnotched). The model is capable of predicting peak force statistics by computing the extreme values of sliding averages of random strength fields. The local strength of the specimen is modeled by a stationary isotropic random field with Gaussian distribution and a given autocorrelation function. The averaging operation represents the progressive loss in material integrity and the associated stress redistribution that takes place prior to reaching the peak load. Once the (linear) averaging process is performed analytically, the resulting random field of averaged strength is assumed to represent a series of representative volume elements (RVEs) and the global strength is found by solving for the minimum of such an effective strength field. All these operations can be written analytically and there are only four model parameters: the three dimensions of the averaging volume (RVE) and the length of the final weakest-link chain. The model is verified using detailed numerical computations of notched and unnotched concrete beams simulated by mesoscale discrete simulations of concrete fracture performed with probabilistic distributions of model parameters. The numerical model used for verification represents material randomness both by assigning random locations to the largest aggregates and by simulating random fluctuations of material parameters via a homogeneous random field.","PeriodicalId":444608,"journal":{"name":"4th International Conference on Uncertainty Quantification in Computational Sciences and Engineering","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANALYTICAL MODEL FOR FRACTURE IN RANDOM QUASIBRITTLE MEDIA BASED ON EXTREMES OF THE AVERAGING PROCESS\",\"authors\":\"M. Vořechovský\",\"doi\":\"10.7712/120221.8035.18924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". The paper presents an analytical model for prediction of the peak force in concrete specimens loaded in bending (both notched and unnotched). The model is capable of predicting peak force statistics by computing the extreme values of sliding averages of random strength fields. The local strength of the specimen is modeled by a stationary isotropic random field with Gaussian distribution and a given autocorrelation function. The averaging operation represents the progressive loss in material integrity and the associated stress redistribution that takes place prior to reaching the peak load. Once the (linear) averaging process is performed analytically, the resulting random field of averaged strength is assumed to represent a series of representative volume elements (RVEs) and the global strength is found by solving for the minimum of such an effective strength field. All these operations can be written analytically and there are only four model parameters: the three dimensions of the averaging volume (RVE) and the length of the final weakest-link chain. The model is verified using detailed numerical computations of notched and unnotched concrete beams simulated by mesoscale discrete simulations of concrete fracture performed with probabilistic distributions of model parameters. The numerical model used for verification represents material randomness both by assigning random locations to the largest aggregates and by simulating random fluctuations of material parameters via a homogeneous random field.\",\"PeriodicalId\":444608,\"journal\":{\"name\":\"4th International Conference on Uncertainty Quantification in Computational Sciences and Engineering\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4th International Conference on Uncertainty Quantification in Computational Sciences and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7712/120221.8035.18924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th International Conference on Uncertainty Quantification in Computational Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7712/120221.8035.18924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

. 本文提出了一种预测混凝土试件在有缺口和无缺口弯曲荷载下峰值力的解析模型。该模型通过计算随机强度场滑动平均值的极值来预测峰值力统计量。试件的局部强度采用高斯分布的平稳各向同性随机场和给定的自相关函数来模拟。平均操作表示材料完整性的逐渐损失以及在达到峰值载荷之前发生的相关应力重新分布。一旦解析地进行(线性)平均过程,则假定得到的平均强度随机场代表一系列具有代表性的体积单元,并通过求解该有效强度场的最小值来求得整体强度。所有这些操作都可以用解析的方式来写,并且只有四个模型参数:平均体积(RVE)的三个维度和最后最弱链的长度。该模型通过对有缺口和无缺口混凝土梁的数值模拟进行了详细的数值计算,并通过模型参数的概率分布进行了混凝土断裂的中尺度离散模拟。用于验证的数值模型通过为最大集合体分配随机位置和通过均匀随机场模拟材料参数的随机波动来表示材料随机性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANALYTICAL MODEL FOR FRACTURE IN RANDOM QUASIBRITTLE MEDIA BASED ON EXTREMES OF THE AVERAGING PROCESS
. The paper presents an analytical model for prediction of the peak force in concrete specimens loaded in bending (both notched and unnotched). The model is capable of predicting peak force statistics by computing the extreme values of sliding averages of random strength fields. The local strength of the specimen is modeled by a stationary isotropic random field with Gaussian distribution and a given autocorrelation function. The averaging operation represents the progressive loss in material integrity and the associated stress redistribution that takes place prior to reaching the peak load. Once the (linear) averaging process is performed analytically, the resulting random field of averaged strength is assumed to represent a series of representative volume elements (RVEs) and the global strength is found by solving for the minimum of such an effective strength field. All these operations can be written analytically and there are only four model parameters: the three dimensions of the averaging volume (RVE) and the length of the final weakest-link chain. The model is verified using detailed numerical computations of notched and unnotched concrete beams simulated by mesoscale discrete simulations of concrete fracture performed with probabilistic distributions of model parameters. The numerical model used for verification represents material randomness both by assigning random locations to the largest aggregates and by simulating random fluctuations of material parameters via a homogeneous random field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信