关于完全混淆:局部信息几何分析

Behrooz Razeghi, F. Calmon, D. Gunduz, S. Voloshynovskiy
{"title":"关于完全混淆:局部信息几何分析","authors":"Behrooz Razeghi, F. Calmon, D. Gunduz, S. Voloshynovskiy","doi":"10.1109/WIFS49906.2020.9360888","DOIUrl":null,"url":null,"abstract":"We consider the problem of privacy-preserving data release for a specific utility task under perfect obfuscation constraint. We establish the necessary and sufficient condition to extract features of the original data that carry as much information about a utility attribute as possible, while not revealing any information about the sensitive attribute. This problem formulation generalizes both the information bottleneck and privacy funnel problems. We adopt a local information geometry analysis that provides useful insight into information coupling and trajectory construction of spherical perturbation of probability mass functions. This analysis allows us to construct the modal decomposition of the joint distributions, divergence transfer matrices, and mutual information. By decomposing the mutual information into orthogonal modes, we obtain the locally sufficient statistics for inferences about the utility attribute, while satisfying perfect obfuscation constraint. Furthermore, we develop the notion of perfect obfuscation based on χ2-divergence and Kullback–Leibler divergence in the Euclidean information space.","PeriodicalId":354881,"journal":{"name":"2020 IEEE International Workshop on Information Forensics and Security (WIFS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"On Perfect Obfuscation: Local Information Geometry Analysis\",\"authors\":\"Behrooz Razeghi, F. Calmon, D. Gunduz, S. Voloshynovskiy\",\"doi\":\"10.1109/WIFS49906.2020.9360888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of privacy-preserving data release for a specific utility task under perfect obfuscation constraint. We establish the necessary and sufficient condition to extract features of the original data that carry as much information about a utility attribute as possible, while not revealing any information about the sensitive attribute. This problem formulation generalizes both the information bottleneck and privacy funnel problems. We adopt a local information geometry analysis that provides useful insight into information coupling and trajectory construction of spherical perturbation of probability mass functions. This analysis allows us to construct the modal decomposition of the joint distributions, divergence transfer matrices, and mutual information. By decomposing the mutual information into orthogonal modes, we obtain the locally sufficient statistics for inferences about the utility attribute, while satisfying perfect obfuscation constraint. Furthermore, we develop the notion of perfect obfuscation based on χ2-divergence and Kullback–Leibler divergence in the Euclidean information space.\",\"PeriodicalId\":354881,\"journal\":{\"name\":\"2020 IEEE International Workshop on Information Forensics and Security (WIFS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Workshop on Information Forensics and Security (WIFS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIFS49906.2020.9360888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Workshop on Information Forensics and Security (WIFS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIFS49906.2020.9360888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

研究了在完全混淆约束下特定实用任务的隐私保护数据发布问题。我们建立了必要和充分条件,以提取原始数据的特征,这些特征携带尽可能多的关于实用属性的信息,同时不透露任何关于敏感属性的信息。这个问题的表述概括了信息瓶颈和隐私漏斗问题。我们采用了局部信息几何分析,为概率质量函数球面摄动的信息耦合和轨迹构建提供了有用的见解。这种分析使我们能够构造联合分布、散度转移矩阵和互信息的模态分解。通过将互信息分解为正交模态,在满足完全混淆约束的情况下,得到了效用属性推断的局部充分统计量。在此基础上,提出了欧几里得信息空间中基于χ2-散度和Kullback-Leibler散度的完全混淆概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Perfect Obfuscation: Local Information Geometry Analysis
We consider the problem of privacy-preserving data release for a specific utility task under perfect obfuscation constraint. We establish the necessary and sufficient condition to extract features of the original data that carry as much information about a utility attribute as possible, while not revealing any information about the sensitive attribute. This problem formulation generalizes both the information bottleneck and privacy funnel problems. We adopt a local information geometry analysis that provides useful insight into information coupling and trajectory construction of spherical perturbation of probability mass functions. This analysis allows us to construct the modal decomposition of the joint distributions, divergence transfer matrices, and mutual information. By decomposing the mutual information into orthogonal modes, we obtain the locally sufficient statistics for inferences about the utility attribute, while satisfying perfect obfuscation constraint. Furthermore, we develop the notion of perfect obfuscation based on χ2-divergence and Kullback–Leibler divergence in the Euclidean information space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信