J. Martins, J. Fonseca, Rafael Costa, J. C. Campos, Alcino Cunha, Nuno Macedo, J. Oliveira
{"title":"用EVEREST验证铁路网模型","authors":"J. Martins, J. Fonseca, Rafael Costa, J. C. Campos, Alcino Cunha, Nuno Macedo, J. Oliveira","doi":"10.1145/3550355.3552439","DOIUrl":null,"url":null,"abstract":"Models - at different levels of abstraction and pertaining to different engineering views - are central in the design of railway networks, in particular signalling systems. The design of such systems must follow numerous strict rules, which may vary from project to project and require information from different views. This renders manual verification of railway networks costly and error-prone. This paper presents EVEREST, a tool for automating the verification of railway network models that preserves the loosely coupled nature of the design process. To achieve this goal, EVEREST first combines two different views of a railway network model - the topology provided in signalling diagrams containing the functional infrastructure, and the precise coordinates of the elements provided in technical drawings (CAD) - in a unified model stored in the railML standard format. This railML model is then verified against a set of user-defined infrastructure rules, written in a custom modal logic that simplifies the specification of spatial constraints in the network. The violated rules can be visualized both in the signalling diagrams and technical drawings, where the element(s) responsible for the violation are highlighted. EVEREST is integrated in a long-term effort of EFACEC to implement industry-strong tools to automate and formally verify the design of railway solutions.","PeriodicalId":303547,"journal":{"name":"Proceedings of the 25th International Conference on Model Driven Engineering Languages and Systems","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Verification of railway network models with EVEREST\",\"authors\":\"J. Martins, J. Fonseca, Rafael Costa, J. C. Campos, Alcino Cunha, Nuno Macedo, J. Oliveira\",\"doi\":\"10.1145/3550355.3552439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Models - at different levels of abstraction and pertaining to different engineering views - are central in the design of railway networks, in particular signalling systems. The design of such systems must follow numerous strict rules, which may vary from project to project and require information from different views. This renders manual verification of railway networks costly and error-prone. This paper presents EVEREST, a tool for automating the verification of railway network models that preserves the loosely coupled nature of the design process. To achieve this goal, EVEREST first combines two different views of a railway network model - the topology provided in signalling diagrams containing the functional infrastructure, and the precise coordinates of the elements provided in technical drawings (CAD) - in a unified model stored in the railML standard format. This railML model is then verified against a set of user-defined infrastructure rules, written in a custom modal logic that simplifies the specification of spatial constraints in the network. The violated rules can be visualized both in the signalling diagrams and technical drawings, where the element(s) responsible for the violation are highlighted. EVEREST is integrated in a long-term effort of EFACEC to implement industry-strong tools to automate and formally verify the design of railway solutions.\",\"PeriodicalId\":303547,\"journal\":{\"name\":\"Proceedings of the 25th International Conference on Model Driven Engineering Languages and Systems\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th International Conference on Model Driven Engineering Languages and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3550355.3552439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on Model Driven Engineering Languages and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3550355.3552439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Verification of railway network models with EVEREST
Models - at different levels of abstraction and pertaining to different engineering views - are central in the design of railway networks, in particular signalling systems. The design of such systems must follow numerous strict rules, which may vary from project to project and require information from different views. This renders manual verification of railway networks costly and error-prone. This paper presents EVEREST, a tool for automating the verification of railway network models that preserves the loosely coupled nature of the design process. To achieve this goal, EVEREST first combines two different views of a railway network model - the topology provided in signalling diagrams containing the functional infrastructure, and the precise coordinates of the elements provided in technical drawings (CAD) - in a unified model stored in the railML standard format. This railML model is then verified against a set of user-defined infrastructure rules, written in a custom modal logic that simplifies the specification of spatial constraints in the network. The violated rules can be visualized both in the signalling diagrams and technical drawings, where the element(s) responsible for the violation are highlighted. EVEREST is integrated in a long-term effort of EFACEC to implement industry-strong tools to automate and formally verify the design of railway solutions.