Kodiak@ALQAC2021:越南法律信息处理的深度学习

Dinh-Truong Do
{"title":"Kodiak@ALQAC2021:越南法律信息处理的深度学习","authors":"Dinh-Truong Do","doi":"10.1109/KSE53942.2021.9648744","DOIUrl":null,"url":null,"abstract":"In this paper, we propose deep learning based methods for addressing the problems of legal text processing in the Automated Legal Question Answering Competition (ALQAC 2021). The competition consists of three challenging tasks based on well-known statute laws in Vietnamese and Thai Language. We participated in three tasks related to the Vietnamese statute law, including the legal document retrieval (Task 1), the legal textual entailment (Task 2), and the legal question answering (Task 3). In Task 1, we combine semantic and lexical scores to identify relevant articles. In Tasks 2&3, we fine-tune pretrained models for the Vietnamese language in order to classify proper labels. The experimental results demonstrate both the difficulties and potentials associated with these approaches.","PeriodicalId":130986,"journal":{"name":"2021 13th International Conference on Knowledge and Systems Engineering (KSE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Kodiak@ALQAC2021: Deep Learning for Vietnamese Legal Information Processing\",\"authors\":\"Dinh-Truong Do\",\"doi\":\"10.1109/KSE53942.2021.9648744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose deep learning based methods for addressing the problems of legal text processing in the Automated Legal Question Answering Competition (ALQAC 2021). The competition consists of three challenging tasks based on well-known statute laws in Vietnamese and Thai Language. We participated in three tasks related to the Vietnamese statute law, including the legal document retrieval (Task 1), the legal textual entailment (Task 2), and the legal question answering (Task 3). In Task 1, we combine semantic and lexical scores to identify relevant articles. In Tasks 2&3, we fine-tune pretrained models for the Vietnamese language in order to classify proper labels. The experimental results demonstrate both the difficulties and potentials associated with these approaches.\",\"PeriodicalId\":130986,\"journal\":{\"name\":\"2021 13th International Conference on Knowledge and Systems Engineering (KSE)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 13th International Conference on Knowledge and Systems Engineering (KSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/KSE53942.2021.9648744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Knowledge and Systems Engineering (KSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE53942.2021.9648744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了基于深度学习的方法来解决自动法律问答竞赛(ALQAC 2021)中的法律文本处理问题。比赛包括三个具有挑战性的任务,这些任务基于越南语和泰语的著名法规。我们参与了三个与越南成文法相关的任务,包括法律文件检索(任务1)、法律文本蕴涵(任务2)和法律问题回答(任务3)。在任务1中,我们结合语义和词汇得分来识别相关文章。在任务2和3中,我们对越南语的预训练模型进行微调,以便对适当的标签进行分类。实验结果表明了这些方法的困难和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kodiak@ALQAC2021: Deep Learning for Vietnamese Legal Information Processing
In this paper, we propose deep learning based methods for addressing the problems of legal text processing in the Automated Legal Question Answering Competition (ALQAC 2021). The competition consists of three challenging tasks based on well-known statute laws in Vietnamese and Thai Language. We participated in three tasks related to the Vietnamese statute law, including the legal document retrieval (Task 1), the legal textual entailment (Task 2), and the legal question answering (Task 3). In Task 1, we combine semantic and lexical scores to identify relevant articles. In Tasks 2&3, we fine-tune pretrained models for the Vietnamese language in order to classify proper labels. The experimental results demonstrate both the difficulties and potentials associated with these approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信