一种新的相似度量和层次聚类方法用于彩色图像分割

Radhwane Gherbaoui, Nacéra Benamrane, Mohammed Ouali
{"title":"一种新的相似度量和层次聚类方法用于彩色图像分割","authors":"Radhwane Gherbaoui, Nacéra Benamrane, Mohammed Ouali","doi":"10.1109/IRI58017.2023.00014","DOIUrl":null,"url":null,"abstract":"Cluster analysis is an important task in data analysis and machine learning. Traditional clustering methods, such as partitioning and density-based approaches, have limitations in identifying natural clusters in datasets with elliptical and chained shapes. In this paper, we propose a novel hierarchical clustering algorithm for color image segmentation that addresses these limitations by quantifying the degree of overlap between clusters as a similarity measure for the merging process.","PeriodicalId":290818,"journal":{"name":"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Similarity Measure and Hierarchical Clustering Approach to Color Image Segmentation\",\"authors\":\"Radhwane Gherbaoui, Nacéra Benamrane, Mohammed Ouali\",\"doi\":\"10.1109/IRI58017.2023.00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cluster analysis is an important task in data analysis and machine learning. Traditional clustering methods, such as partitioning and density-based approaches, have limitations in identifying natural clusters in datasets with elliptical and chained shapes. In this paper, we propose a novel hierarchical clustering algorithm for color image segmentation that addresses these limitations by quantifying the degree of overlap between clusters as a similarity measure for the merging process.\",\"PeriodicalId\":290818,\"journal\":{\"name\":\"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI58017.2023.00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI58017.2023.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚类分析是数据分析和机器学习中的一项重要任务。传统的聚类方法,如分区和基于密度的方法,在识别具有椭圆和链状形状的数据集中的自然聚类方面存在局限性。在本文中,我们提出了一种新的用于彩色图像分割的分层聚类算法,该算法通过量化聚类之间的重叠程度作为合并过程的相似性度量来解决这些限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Similarity Measure and Hierarchical Clustering Approach to Color Image Segmentation
Cluster analysis is an important task in data analysis and machine learning. Traditional clustering methods, such as partitioning and density-based approaches, have limitations in identifying natural clusters in datasets with elliptical and chained shapes. In this paper, we propose a novel hierarchical clustering algorithm for color image segmentation that addresses these limitations by quantifying the degree of overlap between clusters as a similarity measure for the merging process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信