并行图像预处理在游戏中的对象分类

P. Sundareson
{"title":"并行图像预处理在游戏中的对象分类","authors":"P. Sundareson","doi":"10.1109/ICCE-ASIA.2017.8309316","DOIUrl":null,"url":null,"abstract":"Games that involve photo-realistic rendering of virtual worlds, Special effects, VR, involve highly complex calculations on the GPU (Graphics Processing Unit). While GPUs have specialized cores that accelerate Graphics operations, they are also capable of general purpose computing. In this paper, a specific data flow is chosen for the use-case of in-game object-classification. This use-case involves converting large input graphics resolutions (4k) to much lower resolutions (256×256) needed for compute. We compare the different approaches available for executing the data flow using CUDA (Compute Unified Device Architecture) without impacting gaming performance, and publish comparisons on different classes of GPUs for the first time. It is shown that best performance is achieved with a combination of well optimized algorithms, priority of work assignment, and a flexible execution framework.","PeriodicalId":202045,"journal":{"name":"2017 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parallel image pre-processing for in-game object classification\",\"authors\":\"P. Sundareson\",\"doi\":\"10.1109/ICCE-ASIA.2017.8309316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Games that involve photo-realistic rendering of virtual worlds, Special effects, VR, involve highly complex calculations on the GPU (Graphics Processing Unit). While GPUs have specialized cores that accelerate Graphics operations, they are also capable of general purpose computing. In this paper, a specific data flow is chosen for the use-case of in-game object-classification. This use-case involves converting large input graphics resolutions (4k) to much lower resolutions (256×256) needed for compute. We compare the different approaches available for executing the data flow using CUDA (Compute Unified Device Architecture) without impacting gaming performance, and publish comparisons on different classes of GPUs for the first time. It is shown that best performance is achieved with a combination of well optimized algorithms, priority of work assignment, and a flexible execution framework.\",\"PeriodicalId\":202045,\"journal\":{\"name\":\"2017 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)\",\"volume\":\"147 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-ASIA.2017.8309316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-ASIA.2017.8309316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

那些涉及到逼真的虚拟世界渲染、特殊效果、虚拟现实的游戏,需要在GPU(图形处理单元)上进行高度复杂的计算。虽然gpu具有加速图形操作的专用内核,但它们也能够进行通用计算。在本文中,为游戏内对象分类的用例选择了一个特定的数据流。这个用例涉及将大的输入图形分辨率(4k)转换为计算所需的低得多的分辨率(256×256)。我们比较了使用CUDA(计算统一设备架构)在不影响游戏性能的情况下执行数据流的不同方法,并首次发布了不同类别gpu的比较。结果表明,将优化算法、工作分配优先级和灵活的执行框架相结合,可以获得最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel image pre-processing for in-game object classification
Games that involve photo-realistic rendering of virtual worlds, Special effects, VR, involve highly complex calculations on the GPU (Graphics Processing Unit). While GPUs have specialized cores that accelerate Graphics operations, they are also capable of general purpose computing. In this paper, a specific data flow is chosen for the use-case of in-game object-classification. This use-case involves converting large input graphics resolutions (4k) to much lower resolutions (256×256) needed for compute. We compare the different approaches available for executing the data flow using CUDA (Compute Unified Device Architecture) without impacting gaming performance, and publish comparisons on different classes of GPUs for the first time. It is shown that best performance is achieved with a combination of well optimized algorithms, priority of work assignment, and a flexible execution framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信