从同位素心室造影中提取左心室射血分数用于心脏病理诊断的高效算法

Halima Dziri, M. A. Cherni, D. Sellem
{"title":"从同位素心室造影中提取左心室射血分数用于心脏病理诊断的高效算法","authors":"Halima Dziri, M. A. Cherni, D. Sellem","doi":"10.1109/IINTEC.2018.8695302","DOIUrl":null,"url":null,"abstract":"The isotopic ventriculography is one of the most important imaging techniques used for heart pathologies diagnosis and monitoring. It is a qualitative and quantitative exploration offering to clinician the possibility to track the cardiac function. This study proposes a method of segmentation to delimit the left ventricle based on adaptive diffusion flow algorithm. To validate our results, an experimental study is carried out on 50 radionuclide ventriculography sequence of 50 patients (each sequence spans one heart cycle) visually analyzed by an expert. Then, statistical study is carried out in order to evaluate the results by comparing our method to a morphological based segmentation. Results show that the proposed method is better in detecting left ventricular boundaries with a 99.7\\% of AUC value and a correlation factor r=0.97 compared to 91.9\\% and a correlation factor r=0.37 for the morphological based segmentation.","PeriodicalId":144578,"journal":{"name":"2018 International Conference on Internet of Things, Embedded Systems and Communications (IINTEC)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient Algorithm in Extracting Left Ventricular Ejection Fraction from Isotopic Ventriculography for Heart Pathologies Diagnosis\",\"authors\":\"Halima Dziri, M. A. Cherni, D. Sellem\",\"doi\":\"10.1109/IINTEC.2018.8695302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The isotopic ventriculography is one of the most important imaging techniques used for heart pathologies diagnosis and monitoring. It is a qualitative and quantitative exploration offering to clinician the possibility to track the cardiac function. This study proposes a method of segmentation to delimit the left ventricle based on adaptive diffusion flow algorithm. To validate our results, an experimental study is carried out on 50 radionuclide ventriculography sequence of 50 patients (each sequence spans one heart cycle) visually analyzed by an expert. Then, statistical study is carried out in order to evaluate the results by comparing our method to a morphological based segmentation. Results show that the proposed method is better in detecting left ventricular boundaries with a 99.7\\\\% of AUC value and a correlation factor r=0.97 compared to 91.9\\\\% and a correlation factor r=0.37 for the morphological based segmentation.\",\"PeriodicalId\":144578,\"journal\":{\"name\":\"2018 International Conference on Internet of Things, Embedded Systems and Communications (IINTEC)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Internet of Things, Embedded Systems and Communications (IINTEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IINTEC.2018.8695302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Internet of Things, Embedded Systems and Communications (IINTEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IINTEC.2018.8695302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

同位素心室造影是用于心脏病理诊断和监测的重要成像技术之一。它是一种定性和定量的探索,为临床医生提供了跟踪心功能的可能性。提出了一种基于自适应扩散流算法的左心室分割方法。为了验证我们的结果,对50例患者的50个放射性核素心室造影序列(每个序列跨越一个心脏周期)进行了实验研究,由专家进行了视觉分析。然后,进行统计研究,将我们的方法与基于形态学的分割方法进行比较,以评估结果。结果表明,该方法在检测左心室边界时,AUC值为99.7%,相关因子r=0.97,优于形态学分割的91.9%,相关因子r=0.37。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Algorithm in Extracting Left Ventricular Ejection Fraction from Isotopic Ventriculography for Heart Pathologies Diagnosis
The isotopic ventriculography is one of the most important imaging techniques used for heart pathologies diagnosis and monitoring. It is a qualitative and quantitative exploration offering to clinician the possibility to track the cardiac function. This study proposes a method of segmentation to delimit the left ventricle based on adaptive diffusion flow algorithm. To validate our results, an experimental study is carried out on 50 radionuclide ventriculography sequence of 50 patients (each sequence spans one heart cycle) visually analyzed by an expert. Then, statistical study is carried out in order to evaluate the results by comparing our method to a morphological based segmentation. Results show that the proposed method is better in detecting left ventricular boundaries with a 99.7\% of AUC value and a correlation factor r=0.97 compared to 91.9\% and a correlation factor r=0.37 for the morphological based segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信