基于支持向量机的混合信号处理技术的DTMF语音智能检测

J. Nagi, K. S. Yap, S. K. Tiong, S. K. Ahmed, F. Nagi
{"title":"基于支持向量机的混合信号处理技术的DTMF语音智能检测","authors":"J. Nagi, K. S. Yap, S. K. Tiong, S. K. Ahmed, F. Nagi","doi":"10.1109/ITSIM.2008.4631887","DOIUrl":null,"url":null,"abstract":"Efficient methods for DTMF signal detection are important for developing telecommunication equipment. This paper presents a hybrid signal processing and artificial intelligence based approach for the detection of Dual-tone Multifrequency (DTMF) tones under the influence of White Gaussian Noise (WGN) and frequency variation. Key innovations include the use of a Finite Impulse Response (FIR) bandpass filter for reduction of noise from DTMF input samples, and Support Vector Machines (SVM) for intelligent classification of the detected DTMF carrier frequencies. The proposed hybrid DTMF detector scheme is based on power spectrum analysis by means of the Discrete Fourier Transform (DFT). The Goertzel’s Algorithm is used to estimate the seven fundamental DTMF carrier frequencies. The tone detection scheme employs decision logic to detect valid DTMF tones from low and high DTMF frequency groups. Comparison of this hybrid DTMF tone detection model with existing DTMF detection techniques proves the merits of this proposed scheme.","PeriodicalId":314159,"journal":{"name":"2008 International Symposium on Information Technology","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Intelligent detection of DTMF tones using a hybrid signal processing technique with support vector machines\",\"authors\":\"J. Nagi, K. S. Yap, S. K. Tiong, S. K. Ahmed, F. Nagi\",\"doi\":\"10.1109/ITSIM.2008.4631887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient methods for DTMF signal detection are important for developing telecommunication equipment. This paper presents a hybrid signal processing and artificial intelligence based approach for the detection of Dual-tone Multifrequency (DTMF) tones under the influence of White Gaussian Noise (WGN) and frequency variation. Key innovations include the use of a Finite Impulse Response (FIR) bandpass filter for reduction of noise from DTMF input samples, and Support Vector Machines (SVM) for intelligent classification of the detected DTMF carrier frequencies. The proposed hybrid DTMF detector scheme is based on power spectrum analysis by means of the Discrete Fourier Transform (DFT). The Goertzel’s Algorithm is used to estimate the seven fundamental DTMF carrier frequencies. The tone detection scheme employs decision logic to detect valid DTMF tones from low and high DTMF frequency groups. Comparison of this hybrid DTMF tone detection model with existing DTMF detection techniques proves the merits of this proposed scheme.\",\"PeriodicalId\":314159,\"journal\":{\"name\":\"2008 International Symposium on Information Technology\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International Symposium on Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSIM.2008.4631887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Symposium on Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSIM.2008.4631887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

有效的DTMF信号检测方法对电信设备的发展具有重要意义。本文提出了一种基于混合信号处理和人工智能的方法来检测高斯白噪声和频率变化影响下的双音多频(DTMF)音。关键的创新包括使用有限脉冲响应(FIR)带通滤波器来降低DTMF输入样本的噪声,以及支持向量机(SVM)来对检测到的DTMF载波频率进行智能分类。本文提出的混合DTMF检测器方案是基于离散傅立叶变换(DFT)的功率谱分析。利用Goertzel算法估计了DTMF的7个基本载波频率。音调检测方案采用决策逻辑从低DTMF频率组和高DTMF频率组中检测有效DTMF音调。将该混合DTMF音调检测模型与现有的DTMF检测技术进行了比较,证明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent detection of DTMF tones using a hybrid signal processing technique with support vector machines
Efficient methods for DTMF signal detection are important for developing telecommunication equipment. This paper presents a hybrid signal processing and artificial intelligence based approach for the detection of Dual-tone Multifrequency (DTMF) tones under the influence of White Gaussian Noise (WGN) and frequency variation. Key innovations include the use of a Finite Impulse Response (FIR) bandpass filter for reduction of noise from DTMF input samples, and Support Vector Machines (SVM) for intelligent classification of the detected DTMF carrier frequencies. The proposed hybrid DTMF detector scheme is based on power spectrum analysis by means of the Discrete Fourier Transform (DFT). The Goertzel’s Algorithm is used to estimate the seven fundamental DTMF carrier frequencies. The tone detection scheme employs decision logic to detect valid DTMF tones from low and high DTMF frequency groups. Comparison of this hybrid DTMF tone detection model with existing DTMF detection techniques proves the merits of this proposed scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信