利用神经网络和粒子群算法预测伊朗农业部门的年度电力需求

S. Kani, N. Ershad
{"title":"利用神经网络和粒子群算法预测伊朗农业部门的年度电力需求","authors":"S. Kani, N. Ershad","doi":"10.1109/EPC.2007.4520373","DOIUrl":null,"url":null,"abstract":"In this study, we used PSO algorithm and ANN to predict annual electricity consumption in Iranian agriculture sector. The economic indicators used in this paper are price, value added, number of customers and consumption in the previous periods. To predict the future values, a linear- logarithmic model of electrical energy demand is considered. The PSO algorithm applied in this study has been tuned for all its parameters and the best coefficients with minimum error are identified, while all parameter values are tested concurrently. Consumption in the previous periods has been used for testing estimated model. The estimation errors of PSO algorithm are less than that of estimated by genetic algorithm and regression method. In addition, ANN is used to forecast each independent variable and then electricity consumption is forecasted up to year 2010. Electricity consumption in Iranian agriculture sector from 1981 to 2005 is considered as the case for this study.","PeriodicalId":196861,"journal":{"name":"2007 IEEE Canada Electrical Power Conference","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Annual Electricity Demand Prediction for Iranian Agriculture Sector Using ANN and PSO\",\"authors\":\"S. Kani, N. Ershad\",\"doi\":\"10.1109/EPC.2007.4520373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we used PSO algorithm and ANN to predict annual electricity consumption in Iranian agriculture sector. The economic indicators used in this paper are price, value added, number of customers and consumption in the previous periods. To predict the future values, a linear- logarithmic model of electrical energy demand is considered. The PSO algorithm applied in this study has been tuned for all its parameters and the best coefficients with minimum error are identified, while all parameter values are tested concurrently. Consumption in the previous periods has been used for testing estimated model. The estimation errors of PSO algorithm are less than that of estimated by genetic algorithm and regression method. In addition, ANN is used to forecast each independent variable and then electricity consumption is forecasted up to year 2010. Electricity consumption in Iranian agriculture sector from 1981 to 2005 is considered as the case for this study.\",\"PeriodicalId\":196861,\"journal\":{\"name\":\"2007 IEEE Canada Electrical Power Conference\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Canada Electrical Power Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EPC.2007.4520373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Canada Electrical Power Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPC.2007.4520373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在这项研究中,我们使用粒子群算法和人工神经网络来预测伊朗农业部门的年用电量。本文使用的经济指标是价格、增加值、顾客数量和前期消费。为了预测未来的数值,考虑了电力需求的线性-对数模型。本文应用的粒子群算法对其所有参数进行了调优,确定了误差最小的最佳系数,同时对所有参数值进行了并行测试。以前时期的消耗量已用于测试估计模型。粒子群算法的估计误差小于遗传算法和回归算法的估计误差。此外,利用人工神经网络对各自变量进行预测,进而预测到2010年的用电量。1981年至2005年伊朗农业部门的电力消耗被视为本研究的案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Annual Electricity Demand Prediction for Iranian Agriculture Sector Using ANN and PSO
In this study, we used PSO algorithm and ANN to predict annual electricity consumption in Iranian agriculture sector. The economic indicators used in this paper are price, value added, number of customers and consumption in the previous periods. To predict the future values, a linear- logarithmic model of electrical energy demand is considered. The PSO algorithm applied in this study has been tuned for all its parameters and the best coefficients with minimum error are identified, while all parameter values are tested concurrently. Consumption in the previous periods has been used for testing estimated model. The estimation errors of PSO algorithm are less than that of estimated by genetic algorithm and regression method. In addition, ANN is used to forecast each independent variable and then electricity consumption is forecasted up to year 2010. Electricity consumption in Iranian agriculture sector from 1981 to 2005 is considered as the case for this study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信