Sujjatul Islam, R. Qhobosheane, Muthu Ram Prabhu Elenchezhian, Vamsee Vadlamudi, R. Raihan, K. Reifsnider, Wen Shen
{"title":"基于无线磁致伸缩传感器的纤维增强复合材料结构健康监测","authors":"Sujjatul Islam, R. Qhobosheane, Muthu Ram Prabhu Elenchezhian, Vamsee Vadlamudi, R. Raihan, K. Reifsnider, Wen Shen","doi":"10.33599/NASAMPE/S.19.1608","DOIUrl":null,"url":null,"abstract":"Composite materials are extending the horizons of designers in all branches of engineering. These materials have numerous advantages and improved structural properties such as high strength to weight ratio, high stiffness to weight ratio, lightweight, structural strength, and excellent durability. This has led to their use in several applications i.e. automobile, aircraft, and military defense devices. However, these materials experience various types of deformations and damage modes during their service life that are at times challenging to detect. This has led to the development of various non-destructive methods for structural health monitoring (SHM) of the damages in these complex material systems. There are different methods of SHM, which include both wired and wireless techniques. Most of current wireless sensing techniques use relatively large sensors, which are difficult to embed into the composites. This paper presents a small wireless sensor made from magnetostrictive materials that allows continuous monitoring of the local condition within the composites. This sensor can be either attached on the surface of the composites or embedded within the composites. The sensor response during the tensile loading on the composites is monitored. The wireless monitoring using the magnetostrictive sensor can be a convenient in-situ method for SHM of composite structures.","PeriodicalId":162077,"journal":{"name":"SAMPE 2019 - Charlotte, NC","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Health Monitoring of Fiber-Reinforced Composite Using Wireless Magnetostrictive Sensors\",\"authors\":\"Sujjatul Islam, R. Qhobosheane, Muthu Ram Prabhu Elenchezhian, Vamsee Vadlamudi, R. Raihan, K. Reifsnider, Wen Shen\",\"doi\":\"10.33599/NASAMPE/S.19.1608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Composite materials are extending the horizons of designers in all branches of engineering. These materials have numerous advantages and improved structural properties such as high strength to weight ratio, high stiffness to weight ratio, lightweight, structural strength, and excellent durability. This has led to their use in several applications i.e. automobile, aircraft, and military defense devices. However, these materials experience various types of deformations and damage modes during their service life that are at times challenging to detect. This has led to the development of various non-destructive methods for structural health monitoring (SHM) of the damages in these complex material systems. There are different methods of SHM, which include both wired and wireless techniques. Most of current wireless sensing techniques use relatively large sensors, which are difficult to embed into the composites. This paper presents a small wireless sensor made from magnetostrictive materials that allows continuous monitoring of the local condition within the composites. This sensor can be either attached on the surface of the composites or embedded within the composites. The sensor response during the tensile loading on the composites is monitored. The wireless monitoring using the magnetostrictive sensor can be a convenient in-situ method for SHM of composite structures.\",\"PeriodicalId\":162077,\"journal\":{\"name\":\"SAMPE 2019 - Charlotte, NC\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SAMPE 2019 - Charlotte, NC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33599/NASAMPE/S.19.1608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SAMPE 2019 - Charlotte, NC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33599/NASAMPE/S.19.1608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structural Health Monitoring of Fiber-Reinforced Composite Using Wireless Magnetostrictive Sensors
Composite materials are extending the horizons of designers in all branches of engineering. These materials have numerous advantages and improved structural properties such as high strength to weight ratio, high stiffness to weight ratio, lightweight, structural strength, and excellent durability. This has led to their use in several applications i.e. automobile, aircraft, and military defense devices. However, these materials experience various types of deformations and damage modes during their service life that are at times challenging to detect. This has led to the development of various non-destructive methods for structural health monitoring (SHM) of the damages in these complex material systems. There are different methods of SHM, which include both wired and wireless techniques. Most of current wireless sensing techniques use relatively large sensors, which are difficult to embed into the composites. This paper presents a small wireless sensor made from magnetostrictive materials that allows continuous monitoring of the local condition within the composites. This sensor can be either attached on the surface of the composites or embedded within the composites. The sensor response during the tensile loading on the composites is monitored. The wireless monitoring using the magnetostrictive sensor can be a convenient in-situ method for SHM of composite structures.