神经网络在方位估计中的应用

G. Arslan, F. Gürgen, F. A. Sakarya
{"title":"神经网络在方位估计中的应用","authors":"G. Arslan, F. Gürgen, F. A. Sakarya","doi":"10.1109/ICECS.1996.584445","DOIUrl":null,"url":null,"abstract":"This study presents an application of a feedforward neural network (NN) structure to the bearing estimation problem. Using N snapshots from M sensors, the NN estimates the sensor-to-sensor propagation delays, which yield the far-field source location. The proposed network has only one output, which is the direction-of-arrival (DOA) angle. Thus, the network does not require any preprocessing. The NN buffers the sensor data, treats them as multidimensional delayed patterns and gives the location of a sinusoidal signal source in a noisy environment as output. Networks with various hidden nodes are tried with various sensor and snapshot numbers to find the best performance network structure. The effect of intersensor spacing on the performance is investigated. Using the best performance giving structure, the network is trained with various signal to noise ratios (SNRs) and then tested for various SNR levels.","PeriodicalId":402369,"journal":{"name":"Proceedings of Third International Conference on Electronics, Circuits, and Systems","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Application of neural networks to bearing estimation\",\"authors\":\"G. Arslan, F. Gürgen, F. A. Sakarya\",\"doi\":\"10.1109/ICECS.1996.584445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents an application of a feedforward neural network (NN) structure to the bearing estimation problem. Using N snapshots from M sensors, the NN estimates the sensor-to-sensor propagation delays, which yield the far-field source location. The proposed network has only one output, which is the direction-of-arrival (DOA) angle. Thus, the network does not require any preprocessing. The NN buffers the sensor data, treats them as multidimensional delayed patterns and gives the location of a sinusoidal signal source in a noisy environment as output. Networks with various hidden nodes are tried with various sensor and snapshot numbers to find the best performance network structure. The effect of intersensor spacing on the performance is investigated. Using the best performance giving structure, the network is trained with various signal to noise ratios (SNRs) and then tested for various SNR levels.\",\"PeriodicalId\":402369,\"journal\":{\"name\":\"Proceedings of Third International Conference on Electronics, Circuits, and Systems\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Third International Conference on Electronics, Circuits, and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECS.1996.584445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Third International Conference on Electronics, Circuits, and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.1996.584445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种前馈神经网络(NN)结构在轴承估计问题中的应用。使用来自M个传感器的N个快照,神经网络估计传感器到传感器的传播延迟,从而产生远场源位置。该网络只有一个输出,即到达方向(DOA)角。因此,网络不需要任何预处理。神经网络缓冲传感器数据,将其视为多维延迟模式,并在噪声环境中给出正弦信号源的位置作为输出。用不同的传感器个数和快照个数来尝试具有不同隐藏节点的网络,以找到性能最好的网络结构。研究了传感器间距对传感器性能的影响。采用最佳性能给出结构,对网络进行不同信噪比(SNR)的训练,然后对不同信噪比水平进行测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of neural networks to bearing estimation
This study presents an application of a feedforward neural network (NN) structure to the bearing estimation problem. Using N snapshots from M sensors, the NN estimates the sensor-to-sensor propagation delays, which yield the far-field source location. The proposed network has only one output, which is the direction-of-arrival (DOA) angle. Thus, the network does not require any preprocessing. The NN buffers the sensor data, treats them as multidimensional delayed patterns and gives the location of a sinusoidal signal source in a noisy environment as output. Networks with various hidden nodes are tried with various sensor and snapshot numbers to find the best performance network structure. The effect of intersensor spacing on the performance is investigated. Using the best performance giving structure, the network is trained with various signal to noise ratios (SNRs) and then tested for various SNR levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信