基于PCA和2DPCA的单图像人脸识别

Luo Min, Liu Song
{"title":"基于PCA和2DPCA的单图像人脸识别","authors":"Luo Min, Liu Song","doi":"10.1109/WISA.2012.20","DOIUrl":null,"url":null,"abstract":"For most of the face recognition techniques will suffer serious performance drop when there is only one training sample per person, a face recognition method based on principle component analysis and two dimension principle component analysis is proposed. We compared our methods with PCA and 2DPCA. In the experiments, the nearest neighbor classifier is used to recognize different faces from the ORL and Yale face database. Experimental results show that the proposed method improved the recognition performance effectively in comparison with other method.","PeriodicalId":313228,"journal":{"name":"2012 Ninth Web Information Systems and Applications Conference","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Face Recognition Based on PCA and 2DPCA with Single Image Sample\",\"authors\":\"Luo Min, Liu Song\",\"doi\":\"10.1109/WISA.2012.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For most of the face recognition techniques will suffer serious performance drop when there is only one training sample per person, a face recognition method based on principle component analysis and two dimension principle component analysis is proposed. We compared our methods with PCA and 2DPCA. In the experiments, the nearest neighbor classifier is used to recognize different faces from the ORL and Yale face database. Experimental results show that the proposed method improved the recognition performance effectively in comparison with other method.\",\"PeriodicalId\":313228,\"journal\":{\"name\":\"2012 Ninth Web Information Systems and Applications Conference\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Ninth Web Information Systems and Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISA.2012.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Ninth Web Information Systems and Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2012.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

针对大多数人脸识别技术在每个人只有一个训练样本的情况下会出现严重的性能下降问题,提出了一种基于主成分分析和二维主成分分析的人脸识别方法。我们将我们的方法与PCA和2DPCA进行了比较。在实验中,使用最近邻分类器从ORL和Yale人脸数据库中识别不同的人脸。实验结果表明,与其他方法相比,该方法有效地提高了识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face Recognition Based on PCA and 2DPCA with Single Image Sample
For most of the face recognition techniques will suffer serious performance drop when there is only one training sample per person, a face recognition method based on principle component analysis and two dimension principle component analysis is proposed. We compared our methods with PCA and 2DPCA. In the experiments, the nearest neighbor classifier is used to recognize different faces from the ORL and Yale face database. Experimental results show that the proposed method improved the recognition performance effectively in comparison with other method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信