{"title":"基于PBFT的优化聚类区块链验证过程仿真","authors":"Rabeb Ben Othmen, Wassim Abbessi, Sofiane Ouni, Wafa Badreddine, Gilles Dequen","doi":"10.1109/ISCC58397.2023.10218119","DOIUrl":null,"url":null,"abstract":"Recently, blockchain technology has emerged as a revolutionary innovation with its distributed ledger feature that allows applications to store and transmit data in a secure, transparent, and immutable manner. One of the main ideas of blockchain technology is the consensus mechanism for reaching an agreement on the state of the distributed ledger. In this context, Practical Byzantine Fault Tolerance (PBFT) is one of the most popular algorithms. However, it has a high communication overhead and poor scalability. To overcome these limits, this paper presents the effectiveness of our algorithm Random Cluster PBFT (RC-PBFT) through an evaluation of its performance under various network conditions. Our algorithm runs on randomly selected clusters, and the results are then broadcast on the blockchain network. The effectiveness of RC-PBFT is demonstrated by implementations on the NS-3 network simulator, and the tests performed show that our approach achieves significant improvements compared to the original PBFT algorithm.","PeriodicalId":265337,"journal":{"name":"2023 IEEE Symposium on Computers and Communications (ISCC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation Of Optimized Cluster Based PBFT Blockchain Validation Process\",\"authors\":\"Rabeb Ben Othmen, Wassim Abbessi, Sofiane Ouni, Wafa Badreddine, Gilles Dequen\",\"doi\":\"10.1109/ISCC58397.2023.10218119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, blockchain technology has emerged as a revolutionary innovation with its distributed ledger feature that allows applications to store and transmit data in a secure, transparent, and immutable manner. One of the main ideas of blockchain technology is the consensus mechanism for reaching an agreement on the state of the distributed ledger. In this context, Practical Byzantine Fault Tolerance (PBFT) is one of the most popular algorithms. However, it has a high communication overhead and poor scalability. To overcome these limits, this paper presents the effectiveness of our algorithm Random Cluster PBFT (RC-PBFT) through an evaluation of its performance under various network conditions. Our algorithm runs on randomly selected clusters, and the results are then broadcast on the blockchain network. The effectiveness of RC-PBFT is demonstrated by implementations on the NS-3 network simulator, and the tests performed show that our approach achieves significant improvements compared to the original PBFT algorithm.\",\"PeriodicalId\":265337,\"journal\":{\"name\":\"2023 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC58397.2023.10218119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC58397.2023.10218119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulation Of Optimized Cluster Based PBFT Blockchain Validation Process
Recently, blockchain technology has emerged as a revolutionary innovation with its distributed ledger feature that allows applications to store and transmit data in a secure, transparent, and immutable manner. One of the main ideas of blockchain technology is the consensus mechanism for reaching an agreement on the state of the distributed ledger. In this context, Practical Byzantine Fault Tolerance (PBFT) is one of the most popular algorithms. However, it has a high communication overhead and poor scalability. To overcome these limits, this paper presents the effectiveness of our algorithm Random Cluster PBFT (RC-PBFT) through an evaluation of its performance under various network conditions. Our algorithm runs on randomly selected clusters, and the results are then broadcast on the blockchain network. The effectiveness of RC-PBFT is demonstrated by implementations on the NS-3 network simulator, and the tests performed show that our approach achieves significant improvements compared to the original PBFT algorithm.