用非参数算法对具有未知输入的离散系统进行滤波和预测

G. Koshkin, V. Smagin
{"title":"用非参数算法对具有未知输入的离散系统进行滤波和预测","authors":"G. Koshkin, V. Smagin","doi":"10.1109/DT.2014.6868702","DOIUrl":null,"url":null,"abstract":"The paper addressed the filtering and prediction problems with using nonparametric algorithms for discrete stochastic systems with unknown input. The designed algorithms are based on combining the Kalman filter and nonparametric estimator. The optimal properties of the explored algorithms are proved. Examples are given to illustrate the usefulness of the proposed approach.","PeriodicalId":330975,"journal":{"name":"The 10th International Conference on Digital Technologies 2014","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Filtering and prediction for discrete systems with unknown input using nonparametric algorithms\",\"authors\":\"G. Koshkin, V. Smagin\",\"doi\":\"10.1109/DT.2014.6868702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper addressed the filtering and prediction problems with using nonparametric algorithms for discrete stochastic systems with unknown input. The designed algorithms are based on combining the Kalman filter and nonparametric estimator. The optimal properties of the explored algorithms are proved. Examples are given to illustrate the usefulness of the proposed approach.\",\"PeriodicalId\":330975,\"journal\":{\"name\":\"The 10th International Conference on Digital Technologies 2014\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 10th International Conference on Digital Technologies 2014\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DT.2014.6868702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 10th International Conference on Digital Technologies 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DT.2014.6868702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文研究了用非参数算法对未知输入的离散随机系统进行滤波和预测的问题。所设计的算法是基于卡尔曼滤波和非参数估计相结合的。证明了所探索算法的最优性。举例说明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Filtering and prediction for discrete systems with unknown input using nonparametric algorithms
The paper addressed the filtering and prediction problems with using nonparametric algorithms for discrete stochastic systems with unknown input. The designed algorithms are based on combining the Kalman filter and nonparametric estimator. The optimal properties of the explored algorithms are proved. Examples are given to illustrate the usefulness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信