通信和电力基础设施弹性建模的广义集成框架

A. Kwasinski, V. Krishnamurthy
{"title":"通信和电力基础设施弹性建模的广义集成框架","authors":"A. Kwasinski, V. Krishnamurthy","doi":"10.1109/INTLEC.2017.8211686","DOIUrl":null,"url":null,"abstract":"This paper presents a quantitative framework for modeling electric power and communications infrastructures resilience. While in the past, resilience models applied to these infrastructures have focused on technological aspects, a fundamental novel aspect of the herein presented framework is the integral inclusion of models for human-driven processes, such as logistics, that influences recovery speed. Another fundamental novel aspect of the presented modeling framework is the generalized representation of dependencies and the characterization of the role that service buffers, such as energy storage, have on representing dependencies of associated services. Infrastructure system models combine three interconnected domains, each mathematically represented by at least one graph: a physical domain, a human/organizational domain, and a cyber domain. Each of the graphs that form the proposed framework represent the provision of a service. Thus, modeling of functional dependencies is inherently part of the developed models.","PeriodicalId":366207,"journal":{"name":"2017 IEEE International Telecommunications Energy Conference (INTELEC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Generalized integrated framework for modelling communications and electric power infrastructure resilience\",\"authors\":\"A. Kwasinski, V. Krishnamurthy\",\"doi\":\"10.1109/INTLEC.2017.8211686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a quantitative framework for modeling electric power and communications infrastructures resilience. While in the past, resilience models applied to these infrastructures have focused on technological aspects, a fundamental novel aspect of the herein presented framework is the integral inclusion of models for human-driven processes, such as logistics, that influences recovery speed. Another fundamental novel aspect of the presented modeling framework is the generalized representation of dependencies and the characterization of the role that service buffers, such as energy storage, have on representing dependencies of associated services. Infrastructure system models combine three interconnected domains, each mathematically represented by at least one graph: a physical domain, a human/organizational domain, and a cyber domain. Each of the graphs that form the proposed framework represent the provision of a service. Thus, modeling of functional dependencies is inherently part of the developed models.\",\"PeriodicalId\":366207,\"journal\":{\"name\":\"2017 IEEE International Telecommunications Energy Conference (INTELEC)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Telecommunications Energy Conference (INTELEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INTLEC.2017.8211686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Telecommunications Energy Conference (INTELEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTLEC.2017.8211686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了电力和通信基础设施弹性建模的定量框架。虽然在过去,应用于这些基础设施的弹性模型主要关注技术方面,但本文提出的框架的一个基本新颖方面是整合了影响恢复速度的人为驱动过程(如物流)的模型。所提出的建模框架的另一个基本新颖方面是依赖关系的广义表示和服务缓冲区(如能源存储)在表示相关服务的依赖关系时所扮演的角色的特征描述。基础设施系统模型结合了三个相互关联的领域,每个领域都由至少一个图形在数学上表示:物理领域、人/组织领域和网络领域。构成建议框架的每个图都表示服务的提供。因此,功能依赖关系的建模是所开发模型的固有部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized integrated framework for modelling communications and electric power infrastructure resilience
This paper presents a quantitative framework for modeling electric power and communications infrastructures resilience. While in the past, resilience models applied to these infrastructures have focused on technological aspects, a fundamental novel aspect of the herein presented framework is the integral inclusion of models for human-driven processes, such as logistics, that influences recovery speed. Another fundamental novel aspect of the presented modeling framework is the generalized representation of dependencies and the characterization of the role that service buffers, such as energy storage, have on representing dependencies of associated services. Infrastructure system models combine three interconnected domains, each mathematically represented by at least one graph: a physical domain, a human/organizational domain, and a cyber domain. Each of the graphs that form the proposed framework represent the provision of a service. Thus, modeling of functional dependencies is inherently part of the developed models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信