J. Peterson
{"title":"应用程序","authors":"J. Peterson","doi":"10.1201/9781315166254-31","DOIUrl":null,"url":null,"abstract":"(a) The translation (τx0Th)(f) = Th(τ−x0f), (b) The modulation (e0Th)(f) = Th(e ix·ξ0f), (c) The rescaling (Th ◦A)(f) = |det(A)|Th(f ◦A−1), (d) The multiplication by xj : (xjTh)(f) = Th(xjf), (e) The multiplication by g : (gTh)(f) = Th(fg), (f) The derivative ∂xj : (∂xjTh)(f) = −Th(∂xjf), (g) The convolution with f : (Th ∗ f)(x) = Th(f(x− ·)) (is a smooth function), (h) The Fourier transform F : F(Th)(f) = Th(F(f)), (i) The inverse Fourier transform F(Th)(f) = Th(F(f)) = Th(FR(f)).","PeriodicalId":130360,"journal":{"name":"Basic Analysis I","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications\",\"authors\":\"J. Peterson\",\"doi\":\"10.1201/9781315166254-31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"(a) The translation (τx0Th)(f) = Th(τ−x0f), (b) The modulation (e0Th)(f) = Th(e ix·ξ0f), (c) The rescaling (Th ◦A)(f) = |det(A)|Th(f ◦A−1), (d) The multiplication by xj : (xjTh)(f) = Th(xjf), (e) The multiplication by g : (gTh)(f) = Th(fg), (f) The derivative ∂xj : (∂xjTh)(f) = −Th(∂xjf), (g) The convolution with f : (Th ∗ f)(x) = Th(f(x− ·)) (is a smooth function), (h) The Fourier transform F : F(Th)(f) = Th(F(f)), (i) The inverse Fourier transform F(Th)(f) = Th(F(f)) = Th(FR(f)).\",\"PeriodicalId\":130360,\"journal\":{\"name\":\"Basic Analysis I\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basic Analysis I\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9781315166254-31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic Analysis I","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781315166254-31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
(一)翻译(τx0Th) (f) = Th(τ−x0f), (b)调制(e0Th) (f) =届第九(e·ξ0 f), (c)的重新调节(Th◦)(f) = |侦破(a) | Th (f◦−1),(d)乘法xj: (xjTh) (f) = Th (xjf), (e)的乘法g:(高等)(f) = Th (fg), (f)导数∂xj:(∂xjTh) (f) =−Th(∂xjf),与f (g)卷积:(Th∗f) (x) = Th (f (x−·))(是一个光滑函数),傅里叶变换(h) f: f (Th) (f) = (f (f)),(我)傅里叶反变换f (Th) (f) = Th (f (f)) = (FR (f))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。