微动脉瘤检测中隐马尔可夫模型结构的演化

J. Goh, Lilian Tang, L. A. Al Turk
{"title":"微动脉瘤检测中隐马尔可夫模型结构的演化","authors":"J. Goh, Lilian Tang, L. A. Al Turk","doi":"10.1109/UKCI.2010.5625579","DOIUrl":null,"url":null,"abstract":"Micro aneurysms are one of the first visible clinical signs of diabetic retinopathy and their detection can help diagnose the progression of the disease. In this paper, a novel technique based on Genetic Algorithms is used to evolve the structure of the Hidden Markov Models to obtain an optimised model that indicates the presence of micro aneurysms located in a sub-region. This technique not only identifies the optimal number of states, but also determines the topology of the Hidden Markov Model, along with the initial model parameters.","PeriodicalId":403291,"journal":{"name":"2010 UK Workshop on Computational Intelligence (UKCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Evolving the structure of Hidden Markov models for micro aneurysms detection\",\"authors\":\"J. Goh, Lilian Tang, L. A. Al Turk\",\"doi\":\"10.1109/UKCI.2010.5625579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micro aneurysms are one of the first visible clinical signs of diabetic retinopathy and their detection can help diagnose the progression of the disease. In this paper, a novel technique based on Genetic Algorithms is used to evolve the structure of the Hidden Markov Models to obtain an optimised model that indicates the presence of micro aneurysms located in a sub-region. This technique not only identifies the optimal number of states, but also determines the topology of the Hidden Markov Model, along with the initial model parameters.\",\"PeriodicalId\":403291,\"journal\":{\"name\":\"2010 UK Workshop on Computational Intelligence (UKCI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 UK Workshop on Computational Intelligence (UKCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UKCI.2010.5625579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2010.5625579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

微动脉瘤是糖尿病视网膜病变的第一个可见的临床症状之一,它们的检测可以帮助诊断疾病的进展。本文采用一种基于遗传算法的新技术对隐马尔可夫模型的结构进行进化,以获得一个优化模型,该模型表明位于子区域的微动脉瘤的存在。该技术不仅可以识别最优状态数,还可以确定隐马尔可夫模型的拓扑结构以及初始模型参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolving the structure of Hidden Markov models for micro aneurysms detection
Micro aneurysms are one of the first visible clinical signs of diabetic retinopathy and their detection can help diagnose the progression of the disease. In this paper, a novel technique based on Genetic Algorithms is used to evolve the structure of the Hidden Markov Models to obtain an optimised model that indicates the presence of micro aneurysms located in a sub-region. This technique not only identifies the optimal number of states, but also determines the topology of the Hidden Markov Model, along with the initial model parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信