基数约束优化的交叉

T. Friedrich, Timo Kötzing, Aishwarya Radhakrishnan, Leon Schiller, Martin Schirneck, Georg Tennigkeit, Simon Wietheger
{"title":"基数约束优化的交叉","authors":"T. Friedrich, Timo Kötzing, Aishwarya Radhakrishnan, Leon Schiller, Martin Schirneck, Georg Tennigkeit, Simon Wietheger","doi":"10.1145/3603629","DOIUrl":null,"url":null,"abstract":"To understand better how and why crossover can benefit constrained optimization, we consider pseudo-Boolean functions with an upper bound B on the number of 1-bits allowed in the length-n bit string (i.e., a cardinality constraint). We investigate the natural translation of the OneMax test function to this setting, a linear function where B bits have a weight of 1+ 1/n and the remaining bits have a weight of 1. Friedrich et al. [TCS 2020] gave a bound of Θ (n2) for the expected running time of the (1+1) EA on this function. Part of the difficulty when optimizing this problem lies in having to improve individuals meeting the cardinality constraint by flipping a 1 and a 0 simultaneously. The experimental literature proposes balanced operators, preserving the number of 1-bits, as a remedy. We show that a balanced mutation operator optimizes the problem in O(n log n) if n-B = O(1). However, if n-B = Θ (n), we show a bound of Ω (n2), just as for classic bit mutation. Crossover together with a simple island model gives running times of O(n2 / log n) (uniform crossover) and \\(O(n\\sqrt {n})\\) (3-ary majority vote crossover). For balanced uniform crossover with Hamming-distance maximization for diversity, we show a bound of O(n log n). As an additional contribution, we present an extensive analysis of different balanced crossover operators from the literature.","PeriodicalId":220659,"journal":{"name":"ACM Transactions on Evolutionary Learning","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Crossover for Cardinality Constrained Optimization\",\"authors\":\"T. Friedrich, Timo Kötzing, Aishwarya Radhakrishnan, Leon Schiller, Martin Schirneck, Georg Tennigkeit, Simon Wietheger\",\"doi\":\"10.1145/3603629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To understand better how and why crossover can benefit constrained optimization, we consider pseudo-Boolean functions with an upper bound B on the number of 1-bits allowed in the length-n bit string (i.e., a cardinality constraint). We investigate the natural translation of the OneMax test function to this setting, a linear function where B bits have a weight of 1+ 1/n and the remaining bits have a weight of 1. Friedrich et al. [TCS 2020] gave a bound of Θ (n2) for the expected running time of the (1+1) EA on this function. Part of the difficulty when optimizing this problem lies in having to improve individuals meeting the cardinality constraint by flipping a 1 and a 0 simultaneously. The experimental literature proposes balanced operators, preserving the number of 1-bits, as a remedy. We show that a balanced mutation operator optimizes the problem in O(n log n) if n-B = O(1). However, if n-B = Θ (n), we show a bound of Ω (n2), just as for classic bit mutation. Crossover together with a simple island model gives running times of O(n2 / log n) (uniform crossover) and \\\\(O(n\\\\sqrt {n})\\\\) (3-ary majority vote crossover). For balanced uniform crossover with Hamming-distance maximization for diversity, we show a bound of O(n log n). As an additional contribution, we present an extensive analysis of different balanced crossover operators from the literature.\",\"PeriodicalId\":220659,\"journal\":{\"name\":\"ACM Transactions on Evolutionary Learning\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Evolutionary Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3603629\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Evolutionary Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3603629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了更好地理解交叉如何以及为什么可以受益于约束优化,我们考虑在长度为n位的字符串中允许的1位的数量上有上限B的伪布尔函数(即基数约束)。我们研究OneMax测试函数到这个设置的自然转换,一个线性函数,其中B位的权值为1+ 1/n,其余位的权值为1。Friedrich等人[TCS 2020]给出了(1+1)EA对该函数的预期运行时间的界为Θ (n2)。优化这个问题的部分困难在于必须通过同时翻转1和0来改善满足基数约束的个体。实验文献提出平衡算子,保留1位的数量,作为补救措施。我们证明了当n- b = O(1)时,平衡突变算子在O(n log n)内优化问题。然而,如果n- b = Θ (n),我们显示一个Ω (n2)的界,就像经典的位突变一样。结合简单的孤岛模型进行交叉,得到的运行时间为O(n2 / log n)(均匀交叉)和\(O(n\sqrt {n})\) (3-ary多数投票交叉)。对于多样性的汉明距离最大化的平衡均匀交叉,我们给出了O(n log n)的界。作为额外的贡献,我们从文献中对不同的平衡交叉算子进行了广泛的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crossover for Cardinality Constrained Optimization
To understand better how and why crossover can benefit constrained optimization, we consider pseudo-Boolean functions with an upper bound B on the number of 1-bits allowed in the length-n bit string (i.e., a cardinality constraint). We investigate the natural translation of the OneMax test function to this setting, a linear function where B bits have a weight of 1+ 1/n and the remaining bits have a weight of 1. Friedrich et al. [TCS 2020] gave a bound of Θ (n2) for the expected running time of the (1+1) EA on this function. Part of the difficulty when optimizing this problem lies in having to improve individuals meeting the cardinality constraint by flipping a 1 and a 0 simultaneously. The experimental literature proposes balanced operators, preserving the number of 1-bits, as a remedy. We show that a balanced mutation operator optimizes the problem in O(n log n) if n-B = O(1). However, if n-B = Θ (n), we show a bound of Ω (n2), just as for classic bit mutation. Crossover together with a simple island model gives running times of O(n2 / log n) (uniform crossover) and \(O(n\sqrt {n})\) (3-ary majority vote crossover). For balanced uniform crossover with Hamming-distance maximization for diversity, we show a bound of O(n log n). As an additional contribution, we present an extensive analysis of different balanced crossover operators from the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信