基于矩树的快速非参数条件密度估计

Fabian Hinder, Valerie Vaquet, Johannes Brinkrolf, Barbara Hammer
{"title":"基于矩树的快速非参数条件密度估计","authors":"Fabian Hinder, Valerie Vaquet, Johannes Brinkrolf, Barbara Hammer","doi":"10.1109/SSCI50451.2021.9660031","DOIUrl":null,"url":null,"abstract":"In many machine learning tasks, one tries to infer unknown quantities such as the conditional density p(Y | X) from observed ones X. Conditional density estimation (CDE) constitutes a challenging problem due to the trade-off between model complexity, distribution complexity, and overfitting. In case of online learning, where the distribution may change over time (concept drift) or only few data points are available at once, robust, non-parametric approaches are of particular interest. In this paper we present a new, non-parametric tree-ensemble-based method for CDE that reduces the problem to a simple regression task on the transformed input data and a (unconditional) density estimation. We prove the correctness of our approach and show its usefulness in empirical evaluation on standard benchmarks. We show that our method is comparable to other state-of-the-art methods, but is much faster and more robust.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Fast Non-Parametric Conditional Density Estimation using Moment Trees\",\"authors\":\"Fabian Hinder, Valerie Vaquet, Johannes Brinkrolf, Barbara Hammer\",\"doi\":\"10.1109/SSCI50451.2021.9660031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In many machine learning tasks, one tries to infer unknown quantities such as the conditional density p(Y | X) from observed ones X. Conditional density estimation (CDE) constitutes a challenging problem due to the trade-off between model complexity, distribution complexity, and overfitting. In case of online learning, where the distribution may change over time (concept drift) or only few data points are available at once, robust, non-parametric approaches are of particular interest. In this paper we present a new, non-parametric tree-ensemble-based method for CDE that reduces the problem to a simple regression task on the transformed input data and a (unconditional) density estimation. We prove the correctness of our approach and show its usefulness in empirical evaluation on standard benchmarks. We show that our method is comparable to other state-of-the-art methods, but is much faster and more robust.\",\"PeriodicalId\":255763,\"journal\":{\"name\":\"2021 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI50451.2021.9660031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9660031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在许多机器学习任务中,人们试图从观察到的X中推断出未知量,如条件密度p(Y | X)。由于模型复杂性、分布复杂性和过拟合之间的权衡,条件密度估计(CDE)构成了一个具有挑战性的问题。在在线学习的情况下,分布可能会随着时间的推移而改变(概念漂移),或者一次只有少数数据点可用,鲁棒的非参数方法特别有趣。在本文中,我们提出了一种新的基于非参数树集成的CDE方法,该方法将问题简化为对转换后的输入数据和(无条件)密度估计的简单回归任务。我们证明了我们的方法的正确性,并在标准基准的实证评估中显示了它的实用性。我们表明,我们的方法可以与其他最先进的方法相媲美,但速度更快,更健壮。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Non-Parametric Conditional Density Estimation using Moment Trees
In many machine learning tasks, one tries to infer unknown quantities such as the conditional density p(Y | X) from observed ones X. Conditional density estimation (CDE) constitutes a challenging problem due to the trade-off between model complexity, distribution complexity, and overfitting. In case of online learning, where the distribution may change over time (concept drift) or only few data points are available at once, robust, non-parametric approaches are of particular interest. In this paper we present a new, non-parametric tree-ensemble-based method for CDE that reduces the problem to a simple regression task on the transformed input data and a (unconditional) density estimation. We prove the correctness of our approach and show its usefulness in empirical evaluation on standard benchmarks. We show that our method is comparable to other state-of-the-art methods, but is much faster and more robust.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信