基于机器学习的同行评估可信度

Yingru Lin, S. Han, B. Kang
{"title":"基于机器学习的同行评估可信度","authors":"Yingru Lin, S. Han, B. Kang","doi":"10.1145/3184558.3186957","DOIUrl":null,"url":null,"abstract":"The peer assessment approach is considered to be one of the best solutions for scaling both assessment and peer learning to global classrooms, such as MOOCs. However, some academic staff hesitate to use a peer assessment approach for their classes due to concerns about its credibility and reliability. The focus of our research is to detect the credibility level of each assessment performed by students during peer assessment. We found three major scopes in assessing the credibility level of evaluations, 1) Informativity, 2) Accuracy, and 3) Consistency. We collect assessments, including comments and grades provided by students during the peer assessment process and then each feedback-and-grade pair is labeled with its credibility level by Mechanical Turk evaluators. We extract relevant features from each labeled assessment and use them to build a classifier that attempts to automatically assess its level of credibility in C5.0 Decision Tree classifier. The evaluation results show that the model can be used to automatically classify peer assessments as credible or non-credible, with accuracy in the range of 88%.","PeriodicalId":235572,"journal":{"name":"Companion Proceedings of the The Web Conference 2018","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine Learning for the Peer Assessment Credibility\",\"authors\":\"Yingru Lin, S. Han, B. Kang\",\"doi\":\"10.1145/3184558.3186957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The peer assessment approach is considered to be one of the best solutions for scaling both assessment and peer learning to global classrooms, such as MOOCs. However, some academic staff hesitate to use a peer assessment approach for their classes due to concerns about its credibility and reliability. The focus of our research is to detect the credibility level of each assessment performed by students during peer assessment. We found three major scopes in assessing the credibility level of evaluations, 1) Informativity, 2) Accuracy, and 3) Consistency. We collect assessments, including comments and grades provided by students during the peer assessment process and then each feedback-and-grade pair is labeled with its credibility level by Mechanical Turk evaluators. We extract relevant features from each labeled assessment and use them to build a classifier that attempts to automatically assess its level of credibility in C5.0 Decision Tree classifier. The evaluation results show that the model can be used to automatically classify peer assessments as credible or non-credible, with accuracy in the range of 88%.\",\"PeriodicalId\":235572,\"journal\":{\"name\":\"Companion Proceedings of the The Web Conference 2018\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Companion Proceedings of the The Web Conference 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3184558.3186957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the The Web Conference 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3184558.3186957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

同伴评估方法被认为是将评估和同伴学习扩展到全球课堂(如MOOCs)的最佳解决方案之一。然而,由于担心其可信度和可靠性,一些学术人员对在课堂上使用同行评估方法犹豫不决。我们研究的重点是检测学生在同行评估中所做的每个评估的可信度水平。我们发现评估可信度水平的三个主要范围,1)信息性,2)准确性,和3)一致性。我们收集评估,包括学生在同行评估过程中提供的评论和分数,然后每个反馈和分数对由Mechanical Turk评估人员标记其可信度水平。我们从每个标记评估中提取相关特征,并使用它们构建一个分类器,该分类器试图在C5.0决策树分类器中自动评估其可信度水平。评价结果表明,该模型可以自动对同行评价进行可信和不可信的分类,准确率在88%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning for the Peer Assessment Credibility
The peer assessment approach is considered to be one of the best solutions for scaling both assessment and peer learning to global classrooms, such as MOOCs. However, some academic staff hesitate to use a peer assessment approach for their classes due to concerns about its credibility and reliability. The focus of our research is to detect the credibility level of each assessment performed by students during peer assessment. We found three major scopes in assessing the credibility level of evaluations, 1) Informativity, 2) Accuracy, and 3) Consistency. We collect assessments, including comments and grades provided by students during the peer assessment process and then each feedback-and-grade pair is labeled with its credibility level by Mechanical Turk evaluators. We extract relevant features from each labeled assessment and use them to build a classifier that attempts to automatically assess its level of credibility in C5.0 Decision Tree classifier. The evaluation results show that the model can be used to automatically classify peer assessments as credible or non-credible, with accuracy in the range of 88%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信